postprocess.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346
  1. import time
  2. import torch
  3. import matplotlib.pyplot as plt
  4. import numpy as np
  5. from torchvision import transforms
  6. from models.wirenet.postprocess import postprocess
  7. def box_line(pred):
  8. '''
  9. :param pred: 预测结果
  10. :return:
  11. box与line一一对应
  12. {'box': [0.0, 34.23157501220703, 151.70858764648438, 125.10173797607422], 'line': array([[ 1.9720564, 81.73457 ],
  13. [ 1.9933801, 41.730167 ]], dtype=float32)}
  14. '''
  15. box_line = [[] for _ in range((len(pred) - 1))]
  16. for idx, box_ in enumerate(pred[0:-1]):
  17. box = box_['boxes'] # 是一个tensor
  18. line = pred[-1]['wires']['lines'][idx].cpu().numpy() / 128 * 512
  19. score = pred[-1]['wires']['score'][idx]
  20. for i in box:
  21. aaa = {}
  22. aaa['box'] = i.tolist()
  23. aaa['line'] = []
  24. score_max = 0.0
  25. for j in range(len(line)):
  26. if (line[j][0][0] >= i[0] and line[j][1][0] >= i[0] and line[j][0][0] <= i[2] and
  27. line[j][1][0] <= i[2] and line[j][0][1] >= i[1] and line[j][1][1] >= i[1] and
  28. line[j][0][1] <= i[3] and line[j][1][1] <= i[3]):
  29. if score[j] > score_max:
  30. aaa['line'] = line[j]
  31. score_max = score[j]
  32. box_line[idx].append(aaa)
  33. def box_line_(pred):
  34. for idx, box_ in enumerate(pred[0:-1]):
  35. box = box_['boxes'] # 是一个tensor
  36. line = pred[-1]['wires']['lines'][idx].cpu().numpy() / 128 * 512
  37. score = pred[-1]['wires']['score'][idx]
  38. line_ = []
  39. score_ = []
  40. for i in box:
  41. score_max = 0.0
  42. tmp = [[0.0, 0.0], [0.0, 0.0]]
  43. for j in range(len(line)):
  44. if (line[j][0][1] >= i[0] and line[j][1][1] >= i[0] and
  45. line[j][0][1] <= i[2] and line[j][1][1] <= i[2] and
  46. line[j][0][0] >= i[1] and line[j][1][0] >= i[1] and
  47. line[j][0][0] <= i[3] and line[j][1][0] <= i[3]):
  48. if score[j] > score_max:
  49. tmp = line[j]
  50. score_max = score[j]
  51. line_.append(tmp)
  52. score_.append(score_max)
  53. processed_list = torch.tensor(line_)
  54. pred[idx]['line'] = processed_list
  55. processed_s_list = torch.tensor(score_)
  56. pred[idx]['line_score'] = processed_s_list
  57. return pred
  58. # box与line匹配后画在一张图上,不设置阈值,直接画
  59. def show_(imgs, pred, epoch, writer):
  60. col = [
  61. '#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c',
  62. '#98df8a', '#d62728', '#ff9896', '#9467bd', '#c5b0d5',
  63. '#8c564b', '#c49c94', '#e377c2', '#f7b6d2', '#7f7f7f',
  64. '#c7c7c7', '#bcbd22', '#dbdb8d', '#17becf', '#9edae5',
  65. '#8dd3c7', '#ffffb3', '#bebada', '#fb8072', '#80b1d3',
  66. '#fdb462', '#b3de69', '#fccde5', '#bc80bd', '#ccebc5',
  67. '#ffed6f', '#8da0cb', '#e78ac3', '#e5c494', '#b3b3b3',
  68. '#fdbf6f', '#ff7f00', '#cab2d6', '#637939', '#b5cf6b',
  69. '#cedb9c', '#8c6d31', '#e7969c', '#d6616b', '#7b4173',
  70. '#ad494a', '#843c39', '#dd8452', '#f7f7f7', '#cccccc',
  71. '#969696', '#525252', '#f7fcfd', '#e5f5f9', '#ccece6',
  72. '#99d8c9', '#66c2a4', '#2ca25f', '#008d4c', '#005a32',
  73. '#f7fcf0', '#e0f3db', '#ccebc5', '#a8ddb5', '#7bccc4',
  74. '#4eb3d3', '#2b8cbe', '#08589e', '#f7fcfd', '#e0ecf4',
  75. '#bfd3e6', '#9ebcda', '#8c96c6', '#8c6bb4', '#88419d',
  76. '#810f7c', '#4d004b', '#f7f7f7', '#efefef', '#d9d9d9',
  77. '#bfbfbf', '#969696', '#737373', '#525252', '#252525',
  78. '#000000', '#ffffff', '#ffeda0', '#fed976', '#feb24c',
  79. '#fd8d3c', '#fc4e2a', '#e31a1c', '#bd0026', '#800026',
  80. '#ff6f61', '#ff9e64', '#ff6347', '#ffa07a', '#fa8072'
  81. ]
  82. # print(len(col))
  83. im = imgs[0].permute(1, 2, 0)
  84. boxes = pred[0]['boxes'].cpu().numpy()
  85. line = pred[0]['line'].cpu().numpy()
  86. # 可视化预测结
  87. fig, ax = plt.subplots(figsize=(10, 10))
  88. ax.imshow(np.array(im))
  89. for idx, box in enumerate(boxes):
  90. x0, y0, x1, y1 = box
  91. ax.add_patch(
  92. plt.Rectangle((x0, y0), x1 - x0, y1 - y0, fill=False, edgecolor=col[idx], linewidth=1))
  93. for idx, (a, b) in enumerate(line):
  94. ax.scatter(a[1], a[0], c='#871F78', s=2)
  95. ax.scatter(b[1], b[0], c='#871F78', s=2)
  96. ax.plot([a[1], b[1]], [a[0], b[0]], c=col[idx], linewidth=1)
  97. # 将Matplotlib图像转换为Tensor
  98. fig.canvas.draw()
  99. image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8).reshape(
  100. fig.canvas.get_width_height()[::-1] + (3,))
  101. plt.close()
  102. img2 = transforms.ToTensor()(image_from_plot)
  103. writer.add_image("all", img2, epoch)
  104. # box与line匹配后画在一张图上,设置阈值
  105. def show_predict(imgs, pred, t_start):
  106. col = [
  107. '#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c',
  108. '#98df8a', '#d62728', '#ff9896', '#9467bd', '#c5b0d5',
  109. '#8c564b', '#c49c94', '#e377c2', '#f7b6d2', '#7f7f7f',
  110. '#c7c7c7', '#bcbd22', '#dbdb8d', '#17becf', '#9edae5',
  111. '#8dd3c7', '#ffffb3', '#bebada', '#fb8072', '#80b1d3',
  112. '#fdb462', '#b3de69', '#fccde5', '#bc80bd', '#ccebc5',
  113. '#ffed6f', '#8da0cb', '#e78ac3', '#e5c494', '#b3b3b3',
  114. '#fdbf6f', '#ff7f00', '#cab2d6', '#637939', '#b5cf6b',
  115. '#cedb9c', '#8c6d31', '#e7969c', '#d6616b', '#7b4173',
  116. '#ad494a', '#843c39', '#dd8452', '#f7f7f7', '#cccccc',
  117. '#969696', '#525252', '#f7fcfd', '#e5f5f9', '#ccece6',
  118. '#99d8c9', '#66c2a4', '#2ca25f', '#008d4c', '#005a32',
  119. '#f7fcf0', '#e0f3db', '#ccebc5', '#a8ddb5', '#7bccc4',
  120. '#4eb3d3', '#2b8cbe', '#08589e', '#f7fcfd', '#e0ecf4',
  121. '#bfd3e6', '#9ebcda', '#8c96c6', '#8c6bb4', '#88419d',
  122. '#810f7c', '#4d004b', '#f7f7f7', '#efefef', '#d9d9d9',
  123. '#bfbfbf', '#969696', '#737373', '#525252', '#252525',
  124. '#000000', '#ffffff', '#ffeda0', '#fed976', '#feb24c',
  125. '#fd8d3c', '#fc4e2a', '#e31a1c', '#bd0026', '#800026',
  126. '#ff6f61', '#ff9e64', '#ff6347', '#ffa07a', '#fa8072'
  127. ]
  128. print(len(col))
  129. im = imgs.permute(1, 2, 0) # 处理为 [512, 512, 3]
  130. boxes = pred[0]['boxes'].cpu().numpy()
  131. box_scores = pred[0]['scores'].cpu().numpy()
  132. lines = pred[0]['line'].cpu().numpy()
  133. line_scores = pred[0]['line_score'].cpu().numpy()
  134. # 可视化预测结
  135. fig, ax = plt.subplots(figsize=(10, 10))
  136. ax.imshow(np.array(im))
  137. idx = 0
  138. for box, line, box_score, line_score in zip(boxes, lines, box_scores, line_scores):
  139. x0, y0, x1, y1 = box
  140. a, b = line
  141. if box_score > 0.7 and line_score > 0.9:
  142. ax.add_patch(
  143. plt.Rectangle((x0, y0), x1 - x0, y1 - y0, fill=False, edgecolor=col[idx], linewidth=1))
  144. ax.scatter(a[1], a[0], c='#871F78', s=10)
  145. ax.scatter(b[1], b[0], c='#871F78', s=10)
  146. ax.plot([a[1], b[1]], [a[0], b[0]], c=col[idx], linewidth=1)
  147. idx = idx + 1
  148. t_end = time.time()
  149. print(f'predict used:{t_end - t_start}')
  150. plt.show()
  151. # 下面的都没有进行box与line的一一匹配
  152. # 只画线,设阈值
  153. def show_line(imgs, pred, t_start):
  154. im = imgs.permute(1, 2, 0)
  155. line = pred[-1]['wires']['lines'][0].cpu().numpy() / 128 * 512
  156. # print(pred[-1]['wires']['score'])
  157. line_score = pred[-1]['wires']['score'].cpu().numpy()[0]
  158. # 可视化预测结
  159. fig, ax = plt.subplots(figsize=(10, 10))
  160. ax.imshow(np.array(im))
  161. for idx, (a, b) in enumerate(line):
  162. if line_score[idx] < 0.9:
  163. continue
  164. ax.scatter(a[1], a[0], c='#871F78', s=2)
  165. ax.scatter(b[1], b[0], c='#871F78', s=2)
  166. ax.plot([a[1], b[1]], [a[0], b[0]], c='red', linewidth=1)
  167. t_end = time.time()
  168. print(f'show_line used:{t_end - t_start}')
  169. plt.show()
  170. # 只画框,设阈值
  171. def show_box(imgs, pred, t_start):
  172. col = [
  173. '#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c',
  174. '#98df8a', '#d62728', '#ff9896', '#9467bd', '#c5b0d5',
  175. '#8c564b', '#c49c94', '#e377c2', '#f7b6d2', '#7f7f7f',
  176. '#c7c7c7', '#bcbd22', '#dbdb8d', '#17becf', '#9edae5',
  177. '#8dd3c7', '#ffffb3', '#bebada', '#fb8072', '#80b1d3',
  178. '#fdb462', '#b3de69', '#fccde5', '#bc80bd', '#ccebc5',
  179. '#ffed6f', '#8da0cb', '#e78ac3', '#e5c494', '#b3b3b3',
  180. '#fdbf6f', '#ff7f00', '#cab2d6', '#637939', '#b5cf6b',
  181. '#cedb9c', '#8c6d31', '#e7969c', '#d6616b', '#7b4173',
  182. '#ad494a', '#843c39', '#dd8452', '#f7f7f7', '#cccccc',
  183. '#969696', '#525252', '#f7fcfd', '#e5f5f9', '#ccece6',
  184. '#99d8c9', '#66c2a4', '#2ca25f', '#008d4c', '#005a32',
  185. '#f7fcf0', '#e0f3db', '#ccebc5', '#a8ddb5', '#7bccc4',
  186. '#4eb3d3', '#2b8cbe', '#08589e', '#f7fcfd', '#e0ecf4',
  187. '#bfd3e6', '#9ebcda', '#8c96c6', '#8c6bb4', '#88419d',
  188. '#810f7c', '#4d004b', '#f7f7f7', '#efefef', '#d9d9d9',
  189. '#bfbfbf', '#969696', '#737373', '#525252', '#252525',
  190. '#000000', '#ffffff', '#ffeda0', '#fed976', '#feb24c',
  191. '#fd8d3c', '#fc4e2a', '#e31a1c', '#bd0026', '#800026',
  192. '#ff6f61', '#ff9e64', '#ff6347', '#ffa07a', '#fa8072'
  193. ]
  194. # print(len(col))
  195. im = imgs.permute(1, 2, 0)
  196. boxes = pred[0]['boxes'].cpu().numpy()
  197. box_scores = pred[0]['scores'].cpu().numpy()
  198. # 可视化预测结
  199. fig, ax = plt.subplots(figsize=(10, 10))
  200. ax.imshow(np.array(im))
  201. for idx, box in enumerate(boxes):
  202. if box_scores[idx] < 0.7:
  203. continue
  204. x0, y0, x1, y1 = box
  205. ax.add_patch(
  206. plt.Rectangle((x0, y0), x1 - x0, y1 - y0, fill=False, edgecolor=col[idx], linewidth=1))
  207. t_end = time.time()
  208. print(f'show_box used:{t_end - t_start}')
  209. plt.show()
  210. # 将show_line与show_box合并,传入参数确定显示框还是线 都不显示,输出原图
  211. def show_box_or_line(imgs, pred, show_line=False, show_box=False):
  212. col = [
  213. '#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c',
  214. '#98df8a', '#d62728', '#ff9896', '#9467bd', '#c5b0d5',
  215. '#8c564b', '#c49c94', '#e377c2', '#f7b6d2', '#7f7f7f',
  216. '#c7c7c7', '#bcbd22', '#dbdb8d', '#17becf', '#9edae5',
  217. '#8dd3c7', '#ffffb3', '#bebada', '#fb8072', '#80b1d3',
  218. '#fdb462', '#b3de69', '#fccde5', '#bc80bd', '#ccebc5',
  219. '#ffed6f', '#8da0cb', '#e78ac3', '#e5c494', '#b3b3b3',
  220. '#fdbf6f', '#ff7f00', '#cab2d6', '#637939', '#b5cf6b',
  221. '#cedb9c', '#8c6d31', '#e7969c', '#d6616b', '#7b4173',
  222. '#ad494a', '#843c39', '#dd8452', '#f7f7f7', '#cccccc',
  223. '#969696', '#525252', '#f7fcfd', '#e5f5f9', '#ccece6',
  224. '#99d8c9', '#66c2a4', '#2ca25f', '#008d4c', '#005a32',
  225. '#f7fcf0', '#e0f3db', '#ccebc5', '#a8ddb5', '#7bccc4',
  226. '#4eb3d3', '#2b8cbe', '#08589e', '#f7fcfd', '#e0ecf4',
  227. '#bfd3e6', '#9ebcda', '#8c96c6', '#8c6bb4', '#88419d',
  228. '#810f7c', '#4d004b', '#f7f7f7', '#efefef', '#d9d9d9',
  229. '#bfbfbf', '#969696', '#737373', '#525252', '#252525',
  230. '#000000', '#ffffff', '#ffeda0', '#fed976', '#feb24c',
  231. '#fd8d3c', '#fc4e2a', '#e31a1c', '#bd0026', '#800026',
  232. '#ff6f61', '#ff9e64', '#ff6347', '#ffa07a', '#fa8072'
  233. ]
  234. # print(len(col))
  235. im = imgs.permute(1, 2, 0)
  236. boxes = pred[0]['boxes'].cpu().numpy()
  237. line = pred[-1]['wires']['lines'][0].cpu().numpy() / 128 * 512
  238. # 可视化预测结
  239. fig, ax = plt.subplots(figsize=(10, 10))
  240. ax.imshow(np.array(im))
  241. if show_box:
  242. for idx, box in enumerate(boxes):
  243. x0, y0, x1, y1 = box
  244. ax.add_patch(
  245. plt.Rectangle((x0, y0), x1 - x0, y1 - y0, fill=False, edgecolor=col[idx], linewidth=1))
  246. if show_line:
  247. for idx, (a, b) in enumerate(line):
  248. ax.scatter(a[1], a[0], c='#871F78', s=2)
  249. ax.scatter(b[1], b[0], c='#871F78', s=2)
  250. ax.plot([a[1], b[1]], [a[0], b[0]], c='red', linewidth=1)
  251. plt.show()
  252. # 将show_line与show_box合并,传入参数确定显示框还是线 一起画
  253. def show_box_and_line(imgs, pred, show_line=False, show_box=False):
  254. col = [
  255. '#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c',
  256. '#98df8a', '#d62728', '#ff9896', '#9467bd', '#c5b0d5',
  257. '#8c564b', '#c49c94', '#e377c2', '#f7b6d2', '#7f7f7f',
  258. '#c7c7c7', '#bcbd22', '#dbdb8d', '#17becf', '#9edae5',
  259. '#8dd3c7', '#ffffb3', '#bebada', '#fb8072', '#80b1d3',
  260. '#fdb462', '#b3de69', '#fccde5', '#bc80bd', '#ccebc5',
  261. '#ffed6f', '#8da0cb', '#e78ac3', '#e5c494', '#b3b3b3',
  262. '#fdbf6f', '#ff7f00', '#cab2d6', '#637939', '#b5cf6b',
  263. '#cedb9c', '#8c6d31', '#e7969c', '#d6616b', '#7b4173',
  264. '#ad494a', '#843c39', '#dd8452', '#f7f7f7', '#cccccc',
  265. '#969696', '#525252', '#f7fcfd', '#e5f5f9', '#ccece6',
  266. '#99d8c9', '#66c2a4', '#2ca25f', '#008d4c', '#005a32',
  267. '#f7fcf0', '#e0f3db', '#ccebc5', '#a8ddb5', '#7bccc4',
  268. '#4eb3d3', '#2b8cbe', '#08589e', '#f7fcfd', '#e0ecf4',
  269. '#bfd3e6', '#9ebcda', '#8c96c6', '#8c6bb4', '#88419d',
  270. '#810f7c', '#4d004b', '#f7f7f7', '#efefef', '#d9d9d9',
  271. '#bfbfbf', '#969696', '#737373', '#525252', '#252525',
  272. '#000000', '#ffffff', '#ffeda0', '#fed976', '#feb24c',
  273. '#fd8d3c', '#fc4e2a', '#e31a1c', '#bd0026', '#800026',
  274. '#ff6f61', '#ff9e64', '#ff6347', '#ffa07a', '#fa8072'
  275. ]
  276. # print(len(col))
  277. im = imgs.permute(1, 2, 0)
  278. boxes = pred[0]['boxes'].cpu().numpy()
  279. line = pred[-1]['wires']['lines'][0].cpu().numpy() / 128 * 512
  280. # 可视化预测结
  281. fig, axs = plt.subplots(1, 2, figsize=(10, 10))
  282. if show_box:
  283. axs[0].imshow(np.array(im))
  284. for idx, box in enumerate(boxes):
  285. x0, y0, x1, y1 = box
  286. axs[0].add_patch(
  287. plt.Rectangle((x0, y0), x1 - x0, y1 - y0, fill=False, edgecolor=col[idx], linewidth=1))
  288. axs[0].set_title('Boxes')
  289. if show_line:
  290. axs[1].imshow(np.array(im))
  291. for idx, (a, b) in enumerate(line):
  292. axs[1].scatter(a[1], a[0], c='#871F78', s=2)
  293. axs[1].scatter(b[1], b[0], c='#871F78', s=2)
  294. axs[1].plot([a[1], b[1]], [a[0], b[0]], c='red', linewidth=1)
  295. axs[1].set_title('Lines')
  296. # 调整子图之间的距离,防止标题和标签重叠
  297. plt.tight_layout()
  298. plt.show()