import time import torch import matplotlib.pyplot as plt import numpy as np from torchvision import transforms from models.wirenet.postprocess import postprocess def box_line(pred): ''' :param pred: 预测结果 :return: box与line一一对应 {'box': [0.0, 34.23157501220703, 151.70858764648438, 125.10173797607422], 'line': array([[ 1.9720564, 81.73457 ], [ 1.9933801, 41.730167 ]], dtype=float32)} ''' box_line = [[] for _ in range((len(pred) - 1))] for idx, box_ in enumerate(pred[0:-1]): box = box_['boxes'] # 是一个tensor line = pred[-1]['wires']['lines'][idx].cpu().numpy() / 128 * 512 score = pred[-1]['wires']['score'][idx] for i in box: aaa = {} aaa['box'] = i.tolist() aaa['line'] = [] score_max = 0.0 for j in range(len(line)): if (line[j][0][0] >= i[0] and line[j][1][0] >= i[0] and line[j][0][0] <= i[2] and line[j][1][0] <= i[2] and line[j][0][1] >= i[1] and line[j][1][1] >= i[1] and line[j][0][1] <= i[3] and line[j][1][1] <= i[3]): if score[j] > score_max: aaa['line'] = line[j] score_max = score[j] box_line[idx].append(aaa) def box_line_(pred): for idx, box_ in enumerate(pred[0:-1]): box = box_['boxes'] # 是一个tensor line = pred[-1]['wires']['lines'][idx].cpu().numpy() / 128 * 512 score = pred[-1]['wires']['score'][idx] line_ = [] score_ = [] for i in box: score_max = 0.0 tmp = [[0.0, 0.0], [0.0, 0.0]] for j in range(len(line)): if (line[j][0][1] >= i[0] and line[j][1][1] >= i[0] and line[j][0][1] <= i[2] and line[j][1][1] <= i[2] and line[j][0][0] >= i[1] and line[j][1][0] >= i[1] and line[j][0][0] <= i[3] and line[j][1][0] <= i[3]): if score[j] > score_max: tmp = line[j] score_max = score[j] line_.append(tmp) score_.append(score_max) processed_list = torch.tensor(line_) pred[idx]['line'] = processed_list processed_s_list = torch.tensor(score_) pred[idx]['line_score'] = processed_s_list return pred # box与line匹配后画在一张图上,不设置阈值,直接画 def show_(imgs, pred, epoch, writer): col = [ '#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c', '#98df8a', '#d62728', '#ff9896', '#9467bd', '#c5b0d5', '#8c564b', '#c49c94', '#e377c2', '#f7b6d2', '#7f7f7f', '#c7c7c7', '#bcbd22', '#dbdb8d', '#17becf', '#9edae5', '#8dd3c7', '#ffffb3', '#bebada', '#fb8072', '#80b1d3', '#fdb462', '#b3de69', '#fccde5', '#bc80bd', '#ccebc5', '#ffed6f', '#8da0cb', '#e78ac3', '#e5c494', '#b3b3b3', '#fdbf6f', '#ff7f00', '#cab2d6', '#637939', '#b5cf6b', '#cedb9c', '#8c6d31', '#e7969c', '#d6616b', '#7b4173', '#ad494a', '#843c39', '#dd8452', '#f7f7f7', '#cccccc', '#969696', '#525252', '#f7fcfd', '#e5f5f9', '#ccece6', '#99d8c9', '#66c2a4', '#2ca25f', '#008d4c', '#005a32', '#f7fcf0', '#e0f3db', '#ccebc5', '#a8ddb5', '#7bccc4', '#4eb3d3', '#2b8cbe', '#08589e', '#f7fcfd', '#e0ecf4', '#bfd3e6', '#9ebcda', '#8c96c6', '#8c6bb4', '#88419d', '#810f7c', '#4d004b', '#f7f7f7', '#efefef', '#d9d9d9', '#bfbfbf', '#969696', '#737373', '#525252', '#252525', '#000000', '#ffffff', '#ffeda0', '#fed976', '#feb24c', '#fd8d3c', '#fc4e2a', '#e31a1c', '#bd0026', '#800026', '#ff6f61', '#ff9e64', '#ff6347', '#ffa07a', '#fa8072' ] # print(len(col)) im = imgs[0].permute(1, 2, 0) boxes = pred[0]['boxes'].cpu().numpy() line = pred[0]['line'].cpu().numpy() # 可视化预测结 fig, ax = plt.subplots(figsize=(10, 10)) ax.imshow(np.array(im)) for idx, box in enumerate(boxes): x0, y0, x1, y1 = box ax.add_patch( plt.Rectangle((x0, y0), x1 - x0, y1 - y0, fill=False, edgecolor=col[idx], linewidth=1)) for idx, (a, b) in enumerate(line): ax.scatter(a[1], a[0], c='#871F78', s=2) ax.scatter(b[1], b[0], c='#871F78', s=2) ax.plot([a[1], b[1]], [a[0], b[0]], c=col[idx], linewidth=1) # 将Matplotlib图像转换为Tensor fig.canvas.draw() image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8).reshape( fig.canvas.get_width_height()[::-1] + (3,)) plt.close() img2 = transforms.ToTensor()(image_from_plot) writer.add_image("all", img2, epoch) # box与line匹配后画在一张图上,设置阈值 def show_predict(imgs, pred, t_start): col = [ '#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c', '#98df8a', '#d62728', '#ff9896', '#9467bd', '#c5b0d5', '#8c564b', '#c49c94', '#e377c2', '#f7b6d2', '#7f7f7f', '#c7c7c7', '#bcbd22', '#dbdb8d', '#17becf', '#9edae5', '#8dd3c7', '#ffffb3', '#bebada', '#fb8072', '#80b1d3', '#fdb462', '#b3de69', '#fccde5', '#bc80bd', '#ccebc5', '#ffed6f', '#8da0cb', '#e78ac3', '#e5c494', '#b3b3b3', '#fdbf6f', '#ff7f00', '#cab2d6', '#637939', '#b5cf6b', '#cedb9c', '#8c6d31', '#e7969c', '#d6616b', '#7b4173', '#ad494a', '#843c39', '#dd8452', '#f7f7f7', '#cccccc', '#969696', '#525252', '#f7fcfd', '#e5f5f9', '#ccece6', '#99d8c9', '#66c2a4', '#2ca25f', '#008d4c', '#005a32', '#f7fcf0', '#e0f3db', '#ccebc5', '#a8ddb5', '#7bccc4', '#4eb3d3', '#2b8cbe', '#08589e', '#f7fcfd', '#e0ecf4', '#bfd3e6', '#9ebcda', '#8c96c6', '#8c6bb4', '#88419d', '#810f7c', '#4d004b', '#f7f7f7', '#efefef', '#d9d9d9', '#bfbfbf', '#969696', '#737373', '#525252', '#252525', '#000000', '#ffffff', '#ffeda0', '#fed976', '#feb24c', '#fd8d3c', '#fc4e2a', '#e31a1c', '#bd0026', '#800026', '#ff6f61', '#ff9e64', '#ff6347', '#ffa07a', '#fa8072' ] print(len(col)) im = imgs.permute(1, 2, 0) # 处理为 [512, 512, 3] boxes = pred[0]['boxes'].cpu().numpy() box_scores = pred[0]['scores'].cpu().numpy() lines = pred[0]['line'].cpu().numpy() line_scores = pred[0]['line_score'].cpu().numpy() # 可视化预测结 fig, ax = plt.subplots(figsize=(10, 10)) ax.imshow(np.array(im)) idx = 0 for box, line, box_score, line_score in zip(boxes, lines, box_scores, line_scores): x0, y0, x1, y1 = box a, b = line if box_score > 0.7 and line_score > 0.9: ax.add_patch( plt.Rectangle((x0, y0), x1 - x0, y1 - y0, fill=False, edgecolor=col[idx], linewidth=1)) ax.scatter(a[1], a[0], c='#871F78', s=10) ax.scatter(b[1], b[0], c='#871F78', s=10) ax.plot([a[1], b[1]], [a[0], b[0]], c=col[idx], linewidth=1) idx = idx + 1 t_end = time.time() print(f'predict used:{t_end - t_start}') plt.show() # 下面的都没有进行box与line的一一匹配 # 只画线,设阈值 def show_line(imgs, pred, t_start): im = imgs.permute(1, 2, 0) line = pred[-1]['wires']['lines'][0].cpu().numpy() / 128 * 512 # print(pred[-1]['wires']['score']) line_score = pred[-1]['wires']['score'].cpu().numpy()[0] # 可视化预测结 fig, ax = plt.subplots(figsize=(10, 10)) ax.imshow(np.array(im)) for idx, (a, b) in enumerate(line): if line_score[idx] < 0.9: continue ax.scatter(a[1], a[0], c='#871F78', s=2) ax.scatter(b[1], b[0], c='#871F78', s=2) ax.plot([a[1], b[1]], [a[0], b[0]], c='red', linewidth=1) t_end = time.time() print(f'show_line used:{t_end - t_start}') plt.show() # 只画框,设阈值 def show_box(imgs, pred, t_start): col = [ '#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c', '#98df8a', '#d62728', '#ff9896', '#9467bd', '#c5b0d5', '#8c564b', '#c49c94', '#e377c2', '#f7b6d2', '#7f7f7f', '#c7c7c7', '#bcbd22', '#dbdb8d', '#17becf', '#9edae5', '#8dd3c7', '#ffffb3', '#bebada', '#fb8072', '#80b1d3', '#fdb462', '#b3de69', '#fccde5', '#bc80bd', '#ccebc5', '#ffed6f', '#8da0cb', '#e78ac3', '#e5c494', '#b3b3b3', '#fdbf6f', '#ff7f00', '#cab2d6', '#637939', '#b5cf6b', '#cedb9c', '#8c6d31', '#e7969c', '#d6616b', '#7b4173', '#ad494a', '#843c39', '#dd8452', '#f7f7f7', '#cccccc', '#969696', '#525252', '#f7fcfd', '#e5f5f9', '#ccece6', '#99d8c9', '#66c2a4', '#2ca25f', '#008d4c', '#005a32', '#f7fcf0', '#e0f3db', '#ccebc5', '#a8ddb5', '#7bccc4', '#4eb3d3', '#2b8cbe', '#08589e', '#f7fcfd', '#e0ecf4', '#bfd3e6', '#9ebcda', '#8c96c6', '#8c6bb4', '#88419d', '#810f7c', '#4d004b', '#f7f7f7', '#efefef', '#d9d9d9', '#bfbfbf', '#969696', '#737373', '#525252', '#252525', '#000000', '#ffffff', '#ffeda0', '#fed976', '#feb24c', '#fd8d3c', '#fc4e2a', '#e31a1c', '#bd0026', '#800026', '#ff6f61', '#ff9e64', '#ff6347', '#ffa07a', '#fa8072' ] # print(len(col)) im = imgs.permute(1, 2, 0) boxes = pred[0]['boxes'].cpu().numpy() box_scores = pred[0]['scores'].cpu().numpy() # 可视化预测结 fig, ax = plt.subplots(figsize=(10, 10)) ax.imshow(np.array(im)) for idx, box in enumerate(boxes): if box_scores[idx] < 0.7: continue x0, y0, x1, y1 = box ax.add_patch( plt.Rectangle((x0, y0), x1 - x0, y1 - y0, fill=False, edgecolor=col[idx], linewidth=1)) t_end = time.time() print(f'show_box used:{t_end - t_start}') plt.show() # 将show_line与show_box合并,传入参数确定显示框还是线 都不显示,输出原图 def show_box_or_line(imgs, pred, show_line=False, show_box=False): col = [ '#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c', '#98df8a', '#d62728', '#ff9896', '#9467bd', '#c5b0d5', '#8c564b', '#c49c94', '#e377c2', '#f7b6d2', '#7f7f7f', '#c7c7c7', '#bcbd22', '#dbdb8d', '#17becf', '#9edae5', '#8dd3c7', '#ffffb3', '#bebada', '#fb8072', '#80b1d3', '#fdb462', '#b3de69', '#fccde5', '#bc80bd', '#ccebc5', '#ffed6f', '#8da0cb', '#e78ac3', '#e5c494', '#b3b3b3', '#fdbf6f', '#ff7f00', '#cab2d6', '#637939', '#b5cf6b', '#cedb9c', '#8c6d31', '#e7969c', '#d6616b', '#7b4173', '#ad494a', '#843c39', '#dd8452', '#f7f7f7', '#cccccc', '#969696', '#525252', '#f7fcfd', '#e5f5f9', '#ccece6', '#99d8c9', '#66c2a4', '#2ca25f', '#008d4c', '#005a32', '#f7fcf0', '#e0f3db', '#ccebc5', '#a8ddb5', '#7bccc4', '#4eb3d3', '#2b8cbe', '#08589e', '#f7fcfd', '#e0ecf4', '#bfd3e6', '#9ebcda', '#8c96c6', '#8c6bb4', '#88419d', '#810f7c', '#4d004b', '#f7f7f7', '#efefef', '#d9d9d9', '#bfbfbf', '#969696', '#737373', '#525252', '#252525', '#000000', '#ffffff', '#ffeda0', '#fed976', '#feb24c', '#fd8d3c', '#fc4e2a', '#e31a1c', '#bd0026', '#800026', '#ff6f61', '#ff9e64', '#ff6347', '#ffa07a', '#fa8072' ] # print(len(col)) im = imgs.permute(1, 2, 0) boxes = pred[0]['boxes'].cpu().numpy() line = pred[-1]['wires']['lines'][0].cpu().numpy() / 128 * 512 # 可视化预测结 fig, ax = plt.subplots(figsize=(10, 10)) ax.imshow(np.array(im)) if show_box: for idx, box in enumerate(boxes): x0, y0, x1, y1 = box ax.add_patch( plt.Rectangle((x0, y0), x1 - x0, y1 - y0, fill=False, edgecolor=col[idx], linewidth=1)) if show_line: for idx, (a, b) in enumerate(line): ax.scatter(a[1], a[0], c='#871F78', s=2) ax.scatter(b[1], b[0], c='#871F78', s=2) ax.plot([a[1], b[1]], [a[0], b[0]], c='red', linewidth=1) plt.show() # 将show_line与show_box合并,传入参数确定显示框还是线 一起画 def show_box_and_line(imgs, pred, show_line=False, show_box=False): col = [ '#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c', '#98df8a', '#d62728', '#ff9896', '#9467bd', '#c5b0d5', '#8c564b', '#c49c94', '#e377c2', '#f7b6d2', '#7f7f7f', '#c7c7c7', '#bcbd22', '#dbdb8d', '#17becf', '#9edae5', '#8dd3c7', '#ffffb3', '#bebada', '#fb8072', '#80b1d3', '#fdb462', '#b3de69', '#fccde5', '#bc80bd', '#ccebc5', '#ffed6f', '#8da0cb', '#e78ac3', '#e5c494', '#b3b3b3', '#fdbf6f', '#ff7f00', '#cab2d6', '#637939', '#b5cf6b', '#cedb9c', '#8c6d31', '#e7969c', '#d6616b', '#7b4173', '#ad494a', '#843c39', '#dd8452', '#f7f7f7', '#cccccc', '#969696', '#525252', '#f7fcfd', '#e5f5f9', '#ccece6', '#99d8c9', '#66c2a4', '#2ca25f', '#008d4c', '#005a32', '#f7fcf0', '#e0f3db', '#ccebc5', '#a8ddb5', '#7bccc4', '#4eb3d3', '#2b8cbe', '#08589e', '#f7fcfd', '#e0ecf4', '#bfd3e6', '#9ebcda', '#8c96c6', '#8c6bb4', '#88419d', '#810f7c', '#4d004b', '#f7f7f7', '#efefef', '#d9d9d9', '#bfbfbf', '#969696', '#737373', '#525252', '#252525', '#000000', '#ffffff', '#ffeda0', '#fed976', '#feb24c', '#fd8d3c', '#fc4e2a', '#e31a1c', '#bd0026', '#800026', '#ff6f61', '#ff9e64', '#ff6347', '#ffa07a', '#fa8072' ] # print(len(col)) im = imgs.permute(1, 2, 0) boxes = pred[0]['boxes'].cpu().numpy() line = pred[-1]['wires']['lines'][0].cpu().numpy() / 128 * 512 # 可视化预测结 fig, axs = plt.subplots(1, 2, figsize=(10, 10)) if show_box: axs[0].imshow(np.array(im)) for idx, box in enumerate(boxes): x0, y0, x1, y1 = box axs[0].add_patch( plt.Rectangle((x0, y0), x1 - x0, y1 - y0, fill=False, edgecolor=col[idx], linewidth=1)) axs[0].set_title('Boxes') if show_line: axs[1].imshow(np.array(im)) for idx, (a, b) in enumerate(line): axs[1].scatter(a[1], a[0], c='#871F78', s=2) axs[1].scatter(b[1], b[0], c='#871F78', s=2) axs[1].plot([a[1], b[1]], [a[0], b[0]], c='red', linewidth=1) axs[1].set_title('Lines') # 调整子图之间的距离,防止标题和标签重叠 plt.tight_layout() plt.show()