wireframe.yaml 1.3 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273
  1. io:
  2. logdir: logs/
  3. datadir: D:\python\PycharmProjects\data
  4. # datadir: /home/dieu/lcnn/dataset/line_data_104
  5. resume_from:
  6. # resume_from: /home/dieu/lcnn/logs/241112-163302-175fb79-my_data_104_resume
  7. num_workers: 0
  8. tensorboard_port: 0
  9. validation_interval: 300 # 评估间隔
  10. model:
  11. image:
  12. mean: [109.730, 103.832, 98.681]
  13. stddev: [22.275, 22.124, 23.229]
  14. batch_size: 4
  15. batch_size_eval: 2
  16. # backbone multi-task parameters
  17. head_size: [[2], [1], [2],[4]]
  18. loss_weight:
  19. jmap: 8.0
  20. lmap: 0.5
  21. joff: 0.25
  22. lpos: 1
  23. lneg: 1
  24. boxes: 1.0 # 新增 box loss 权重
  25. # backbone parameters
  26. backbone: fasterrcnn_resnet50
  27. # backbone: unet
  28. depth: 4
  29. num_stacks: 1
  30. num_blocks: 1
  31. # sampler parameters
  32. ## static sampler
  33. n_stc_posl: 300
  34. n_stc_negl: 40
  35. ## dynamic sampler
  36. n_dyn_junc: 300
  37. n_dyn_posl: 300
  38. n_dyn_negl: 80
  39. n_dyn_othr: 600
  40. # LOIPool layer parameters
  41. n_pts0: 32
  42. n_pts1: 8
  43. # line verification network parameters
  44. dim_loi: 128
  45. dim_fc: 1024
  46. # maximum junction and line outputs
  47. n_out_junc: 250
  48. n_out_line: 2500
  49. # additional ablation study parameters
  50. use_cood: 0
  51. use_slop: 0
  52. use_conv: 0
  53. # junction threashold for evaluation (See #5)
  54. eval_junc_thres: 0.008
  55. optim:
  56. name: Adam
  57. lr: 4.0e-4
  58. amsgrad: True
  59. weight_decay: 1.0e-4
  60. max_epoch: 1000
  61. lr_decay_epoch: 10