io: logdir: logs/ datadir: D:\python\PycharmProjects\data # datadir: /home/dieu/lcnn/dataset/line_data_104 resume_from: # resume_from: /home/dieu/lcnn/logs/241112-163302-175fb79-my_data_104_resume num_workers: 0 tensorboard_port: 0 validation_interval: 300 # 评估间隔 model: image: mean: [109.730, 103.832, 98.681] stddev: [22.275, 22.124, 23.229] batch_size: 4 batch_size_eval: 2 # backbone multi-task parameters head_size: [[2], [1], [2],[4]] loss_weight: jmap: 8.0 lmap: 0.5 joff: 0.25 lpos: 1 lneg: 1 boxes: 1.0 # 新增 box loss 权重 # backbone parameters backbone: fasterrcnn_resnet50 # backbone: unet depth: 4 num_stacks: 1 num_blocks: 1 # sampler parameters ## static sampler n_stc_posl: 300 n_stc_negl: 40 ## dynamic sampler n_dyn_junc: 300 n_dyn_posl: 300 n_dyn_negl: 80 n_dyn_othr: 600 # LOIPool layer parameters n_pts0: 32 n_pts1: 8 # line verification network parameters dim_loi: 128 dim_fc: 1024 # maximum junction and line outputs n_out_junc: 250 n_out_line: 2500 # additional ablation study parameters use_cood: 0 use_slop: 0 use_conv: 0 # junction threashold for evaluation (See #5) eval_junc_thres: 0.008 optim: name: Adam lr: 4.0e-4 amsgrad: True weight_decay: 1.0e-4 max_epoch: 1000 lr_decay_epoch: 10