|
@@ -68,7 +68,6 @@ class LineNet(BaseDetectionNet):
|
|
#
|
|
#
|
|
# self.__construct__(backbone=backbone, num_classes=num_classes, **kwargs)
|
|
# self.__construct__(backbone=backbone, num_classes=num_classes, **kwargs)
|
|
|
|
|
|
-
|
|
|
|
def __init__(
|
|
def __init__(
|
|
self,
|
|
self,
|
|
backbone,
|
|
backbone,
|
|
@@ -202,17 +201,15 @@ class LineNet(BaseDetectionNet):
|
|
|
|
|
|
super().__init__(backbone, rpn, roi_heads, transform)
|
|
super().__init__(backbone, rpn, roi_heads, transform)
|
|
|
|
|
|
-
|
|
|
|
self.roi_heads = roi_heads
|
|
self.roi_heads = roi_heads
|
|
|
|
|
|
- self.roi_heads.line_head = line_head
|
|
|
|
- self.roi_heads.line_predictor = line_predictor
|
|
|
|
|
|
+ # self.roi_heads.line_head = line_head
|
|
|
|
+ # self.roi_heads.line_predictor = line_predictor
|
|
|
|
|
|
def train_by_cfg(self, cfg):
|
|
def train_by_cfg(self, cfg):
|
|
# cfg = read_yaml(cfg)
|
|
# cfg = read_yaml(cfg)
|
|
self.trainer = Trainer()
|
|
self.trainer = Trainer()
|
|
- self.trainer.train_cfg(model=self,cfg=cfg)
|
|
|
|
-
|
|
|
|
|
|
+ self.trainer.train_cfg(model=self, cfg=cfg)
|
|
|
|
|
|
|
|
|
|
class TwoMLPHead(nn.Module):
|
|
class TwoMLPHead(nn.Module):
|
|
@@ -496,6 +493,8 @@ def linenet_resnet50_fpn(
|
|
num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
|
|
num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
|
|
elif num_classes is None:
|
|
elif num_classes is None:
|
|
num_classes = 91
|
|
num_classes = 91
|
|
|
|
+ if weights_backbone is not None:
|
|
|
|
+ print(f'resnet50 weights is not None')
|
|
|
|
|
|
is_trained = weights is not None or weights_backbone is not None
|
|
is_trained = weights is not None or weights_backbone is not None
|
|
trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3)
|
|
trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3)
|