|
@@ -47,7 +47,24 @@ class Bottleneck1D(nn.Module):
|
|
|
return x + self.op(x)
|
|
|
|
|
|
class LineRCNNPredictor(nn.Module):
|
|
|
- def __init__(self,**kwargs):
|
|
|
+ def __init__(self,n_pts0 = 32,
|
|
|
+ n_pts1 = 8,
|
|
|
+ n_stc_posl =300,
|
|
|
+ dim_loi = 128,
|
|
|
+ use_conv = 0,
|
|
|
+ dim_fc = 1024,
|
|
|
+ n_out_line = 2500,
|
|
|
+ n_out_junc =250,
|
|
|
+ n_dyn_junc = 300,
|
|
|
+ eval_junc_thres = 0.008,
|
|
|
+ n_dyn_posl =300,
|
|
|
+ n_dyn_negl =80,
|
|
|
+ n_dyn_othr = 600,
|
|
|
+ use_cood = 0,
|
|
|
+ use_slop = 0,
|
|
|
+ n_stc_negl = 40,
|
|
|
+ head_size = [[2], [1], [2]] ,
|
|
|
+ **kwargs):
|
|
|
super().__init__()
|
|
|
# self.backbone = backbone
|
|
|
# self.cfg = read_yaml(cfg)
|
|
@@ -76,24 +93,24 @@ class LineRCNNPredictor(nn.Module):
|
|
|
# self.head_size = self.cfg['head_size']
|
|
|
|
|
|
|
|
|
- self.n_pts0 = 32
|
|
|
- self.n_pts1 = 8
|
|
|
- self.n_stc_posl =300
|
|
|
- self.dim_loi = 128
|
|
|
- self.use_conv = 0
|
|
|
- self.dim_fc = 1024
|
|
|
- self.n_out_line = 2500
|
|
|
- self.n_out_junc =250
|
|
|
+ self.n_pts0 = n_pts0
|
|
|
+ self.n_pts1 = n_pts1
|
|
|
+ self.n_stc_posl =n_stc_posl
|
|
|
+ self.dim_loi = dim_loi
|
|
|
+ self.use_conv = use_conv
|
|
|
+ self.dim_fc = dim_fc
|
|
|
+ self.n_out_line = n_out_line
|
|
|
+ self.n_out_junc =n_out_junc
|
|
|
# self.loss_weight =
|
|
|
- self.n_dyn_junc = 300
|
|
|
- self.eval_junc_thres = 0.008
|
|
|
- self.n_dyn_posl =300
|
|
|
- self.n_dyn_negl =80
|
|
|
- self.n_dyn_othr = 600
|
|
|
- self.use_cood = 0
|
|
|
- self.use_slop = 0
|
|
|
- self.n_stc_negl = 80
|
|
|
- self.head_size = [[2], [1], [2]]
|
|
|
+ self.n_dyn_junc = n_dyn_junc
|
|
|
+ self.eval_junc_thres = eval_junc_thres
|
|
|
+ self.n_dyn_posl =n_dyn_posl
|
|
|
+ self.n_dyn_negl = n_dyn_negl
|
|
|
+ self.n_dyn_othr = n_dyn_othr
|
|
|
+ self.use_cood = use_cood
|
|
|
+ self.use_slop = use_slop
|
|
|
+ self.n_stc_negl = n_stc_negl
|
|
|
+ self.head_size = head_size
|
|
|
|
|
|
self.num_class = sum(sum(self.head_size, []))
|
|
|
self.head_off = np.cumsum([sum(h) for h in self.head_size])
|