123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229 |
- # Modified by Raul Mur-Artal
- # Automatically compute the optimal scale factor for monocular VO/SLAM.
- # Software License Agreement (BSD License)
- #
- # Copyright (c) 2013, Juergen Sturm, TUM
- # All rights reserved.
- #
- # Redistribution and use in source and binary forms, with or without
- # modification, are permitted provided that the following conditions
- # are met:
- #
- # * Redistributions of source code must retain the above copyright
- # notice, this list of conditions and the following disclaimer.
- # * Redistributions in binary form must reproduce the above
- # copyright notice, this list of conditions and the following
- # disclaimer in the documentation and/or other materials provided
- # with the distribution.
- # * Neither the name of TUM nor the names of its
- # contributors may be used to endorse or promote products derived
- # from this software without specific prior written permission.
- #
- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
- # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
- # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
- # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
- # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
- # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- # POSSIBILITY OF SUCH DAMAGE.
- #
- # Requirements:
- # sudo apt-get install python-argparse
- """
- This script computes the absolute trajectory error from the ground truth
- trajectory and the estimated trajectory.
- """
- import sys
- import numpy
- import argparse
- import associate
- def align(model,data):
- """Align two trajectories using the method of Horn (closed-form).
-
- Input:
- model -- first trajectory (3xn)
- data -- second trajectory (3xn)
-
- Output:
- rot -- rotation matrix (3x3)
- trans -- translation vector (3x1)
- trans_error -- translational error per point (1xn)
- """
- numpy.set_printoptions(precision=3,suppress=True)
- model_zerocentered = model - model.mean(1)
- data_zerocentered = data - data.mean(1)
-
- W = numpy.zeros( (3,3) )
- for column in range(model.shape[1]):
- W += numpy.outer(model_zerocentered[:,column],data_zerocentered[:,column])
- U,d,Vh = numpy.linalg.linalg.svd(W.transpose())
- S = numpy.matrix(numpy.identity( 3 ))
- if(numpy.linalg.det(U) * numpy.linalg.det(Vh)<0):
- S[2,2] = -1
- rot = U*S*Vh
- rotmodel = rot*model_zerocentered
- dots = 0.0
- norms = 0.0
- for column in range(data_zerocentered.shape[1]):
- dots += numpy.dot(data_zerocentered[:,column].transpose(),rotmodel[:,column])
- normi = numpy.linalg.norm(model_zerocentered[:,column])
- norms += normi*normi
- s = float(dots/norms)
-
- transGT = data.mean(1) - s*rot * model.mean(1)
- trans = data.mean(1) - rot * model.mean(1)
- model_alignedGT = s*rot * model + transGT
- model_aligned = rot * model + trans
- alignment_errorGT = model_alignedGT - data
- alignment_error = model_aligned - data
- trans_errorGT = numpy.sqrt(numpy.sum(numpy.multiply(alignment_errorGT,alignment_errorGT),0)).A[0]
- trans_error = numpy.sqrt(numpy.sum(numpy.multiply(alignment_error,alignment_error),0)).A[0]
-
- return rot,transGT,trans_errorGT,trans,trans_error, s
- def plot_traj(ax,stamps,traj,style,color,label):
- """
- Plot a trajectory using matplotlib.
-
- Input:
- ax -- the plot
- stamps -- time stamps (1xn)
- traj -- trajectory (3xn)
- style -- line style
- color -- line color
- label -- plot legend
-
- """
- stamps.sort()
- interval = numpy.median([s-t for s,t in zip(stamps[1:],stamps[:-1])])
- x = []
- y = []
- last = stamps[0]
- for i in range(len(stamps)):
- if stamps[i]-last < 2*interval:
- x.append(traj[i][0])
- y.append(traj[i][1])
- elif len(x)>0:
- ax.plot(x,y,style,color=color,label=label)
- label=""
- x=[]
- y=[]
- last= stamps[i]
- if len(x)>0:
- ax.plot(x,y,style,color=color,label=label)
-
- if __name__=="__main__":
- # parse command line
- parser = argparse.ArgumentParser(description='''
- This script computes the absolute trajectory error from the ground truth trajectory and the estimated trajectory.
- ''')
- parser.add_argument('first_file', help='ground truth trajectory (format: timestamp tx ty tz qx qy qz qw)')
- parser.add_argument('second_file', help='estimated trajectory (format: timestamp tx ty tz qx qy qz qw)')
- parser.add_argument('--offset', help='time offset added to the timestamps of the second file (default: 0.0)',default=0.0)
- parser.add_argument('--scale', help='scaling factor for the second trajectory (default: 1.0)',default=1.0)
- parser.add_argument('--max_difference', help='maximally allowed time difference for matching entries (default: 10000000 ns)',default=20000000)
- parser.add_argument('--save', help='save aligned second trajectory to disk (format: stamp2 x2 y2 z2)')
- parser.add_argument('--save_associations', help='save associated first and aligned second trajectory to disk (format: stamp1 x1 y1 z1 stamp2 x2 y2 z2)')
- parser.add_argument('--plot', help='plot the first and the aligned second trajectory to an image (format: png)')
- parser.add_argument('--verbose', help='print all evaluation data (otherwise, only the RMSE absolute translational error in meters after alignment will be printed)', action='store_true')
- parser.add_argument('--verbose2', help='print scale eror and RMSE absolute translational error in meters after alignment with and without scale correction', action='store_true')
- args = parser.parse_args()
- first_list = associate.read_file_list(args.first_file, False)
- second_list = associate.read_file_list(args.second_file, False)
- matches = associate.associate(first_list, second_list,float(args.offset),float(args.max_difference))
- if len(matches)<2:
- sys.exit("Couldn't find matching timestamp pairs between groundtruth and estimated trajectory! Did you choose the correct sequence?")
- first_xyz = numpy.matrix([[float(value) for value in first_list[a][0:3]] for a,b in matches]).transpose()
- second_xyz = numpy.matrix([[float(value)*float(args.scale) for value in second_list[b][0:3]] for a,b in matches]).transpose()
- dictionary_items = second_list.items()
- sorted_second_list = sorted(dictionary_items)
- second_xyz_full = numpy.matrix([[float(value)*float(args.scale) for value in sorted_second_list[i][1][0:3]] for i in range(len(sorted_second_list))]).transpose() # sorted_second_list.keys()]).transpose()
- rot,transGT,trans_errorGT,trans,trans_error, scale = align(second_xyz,first_xyz)
-
- second_xyz_aligned = scale * rot * second_xyz + trans
- second_xyz_notscaled = rot * second_xyz + trans
- second_xyz_notscaled_full = rot * second_xyz_full + trans
- first_stamps = first_list.keys()
- first_stamps.sort()
- first_xyz_full = numpy.matrix([[float(value) for value in first_list[b][0:3]] for b in first_stamps]).transpose()
-
- second_stamps = second_list.keys()
- second_stamps.sort()
- second_xyz_full = numpy.matrix([[float(value)*float(args.scale) for value in second_list[b][0:3]] for b in second_stamps]).transpose()
- second_xyz_full_aligned = scale * rot * second_xyz_full + trans
-
- if args.verbose:
- print "compared_pose_pairs %d pairs"%(len(trans_error))
- print "absolute_translational_error.rmse %f m"%numpy.sqrt(numpy.dot(trans_error,trans_error) / len(trans_error))
- print "absolute_translational_error.mean %f m"%numpy.mean(trans_error)
- print "absolute_translational_error.median %f m"%numpy.median(trans_error)
- print "absolute_translational_error.std %f m"%numpy.std(trans_error)
- print "absolute_translational_error.min %f m"%numpy.min(trans_error)
- print "absolute_translational_error.max %f m"%numpy.max(trans_error)
- print "max idx: %i" %numpy.argmax(trans_error)
- else:
- # print "%f, %f " % (numpy.sqrt(numpy.dot(trans_error,trans_error) / len(trans_error)), scale)
- # print "%f,%f" % (numpy.sqrt(numpy.dot(trans_error,trans_error) / len(trans_error)), scale)
- print "%f,%f,%f" % (numpy.sqrt(numpy.dot(trans_error,trans_error) / len(trans_error)), scale, numpy.sqrt(numpy.dot(trans_errorGT,trans_errorGT) / len(trans_errorGT)))
- # print "%f" % len(trans_error)
- if args.verbose2:
- print "compared_pose_pairs %d pairs"%(len(trans_error))
- print "absolute_translational_error.rmse %f m"%numpy.sqrt(numpy.dot(trans_error,trans_error) / len(trans_error))
- print "absolute_translational_errorGT.rmse %f m"%numpy.sqrt(numpy.dot(trans_errorGT,trans_errorGT) / len(trans_errorGT))
- if args.save_associations:
- file = open(args.save_associations,"w")
- file.write("\n".join(["%f %f %f %f %f %f %f %f"%(a,x1,y1,z1,b,x2,y2,z2) for (a,b),(x1,y1,z1),(x2,y2,z2) in zip(matches,first_xyz.transpose().A,second_xyz_aligned.transpose().A)]))
- file.close()
-
- if args.save:
- file = open(args.save,"w")
- file.write("\n".join(["%f "%stamp+" ".join(["%f"%d for d in line]) for stamp,line in zip(second_stamps,second_xyz_notscaled_full.transpose().A)]))
- file.close()
- if args.plot:
- import matplotlib
- matplotlib.use('Agg')
- import matplotlib.pyplot as plt
- import matplotlib.pylab as pylab
- from matplotlib.patches import Ellipse
- fig = plt.figure()
- ax = fig.add_subplot(111)
- plot_traj(ax,first_stamps,first_xyz_full.transpose().A,'-',"black","ground truth")
- plot_traj(ax,second_stamps,second_xyz_full_aligned.transpose().A,'-',"blue","estimated")
- label="difference"
- for (a,b),(x1,y1,z1),(x2,y2,z2) in zip(matches,first_xyz.transpose().A,second_xyz_aligned.transpose().A):
- ax.plot([x1,x2],[y1,y2],'-',color="red",label=label)
- label=""
-
- ax.legend()
-
- ax.set_xlabel('x [m]')
- ax.set_ylabel('y [m]')
- plt.axis('equal')
- plt.savefig(args.plot,format="pdf")
-
|