123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725 |
- #ifndef SOPHUS_RXSO3_HPP
- #define SOPHUS_RXSO3_HPP
- #include "so3.hpp"
- namespace Sophus {
- template <class Scalar_, int Options = 0>
- class RxSO3;
- using RxSO3d = RxSO3<double>;
- using RxSO3f = RxSO3<float>;
- }
- namespace Eigen {
- namespace internal {
- template <class Scalar_, int Options_>
- struct traits<Sophus::RxSO3<Scalar_, Options_>> {
- static constexpr int Options = Options_;
- using Scalar = Scalar_;
- using QuaternionType = Eigen::Quaternion<Scalar, Options>;
- };
- template <class Scalar_, int Options_>
- struct traits<Map<Sophus::RxSO3<Scalar_>, Options_>>
- : traits<Sophus::RxSO3<Scalar_, Options_>> {
- static constexpr int Options = Options_;
- using Scalar = Scalar_;
- using QuaternionType = Map<Eigen::Quaternion<Scalar>, Options>;
- };
- template <class Scalar_, int Options_>
- struct traits<Map<Sophus::RxSO3<Scalar_> const, Options_>>
- : traits<Sophus::RxSO3<Scalar_, Options_> const> {
- static constexpr int Options = Options_;
- using Scalar = Scalar_;
- using QuaternionType = Map<Eigen::Quaternion<Scalar> const, Options>;
- };
- }
- }
- namespace Sophus {
- template <class Derived>
- class RxSO3Base {
- public:
- static constexpr int Options = Eigen::internal::traits<Derived>::Options;
- using Scalar = typename ;
- using QuaternionType =
- typename Eigen::internal::traits<Derived>::QuaternionType;
- using QuaternionTemporaryType = Eigen::Quaternion<Scalar, Options>;
-
-
- static int constexpr DoF = 4;
-
- static int constexpr num_parameters = 4;
-
- static int constexpr N = 3;
- using Transformation = Matrix<Scalar, N, N>;
- using Point = Vector3<Scalar>;
- using HomogeneousPoint = Vector4<Scalar>;
- using Line = ParametrizedLine3<Scalar>;
- using Tangent = Vector<Scalar, DoF>;
- using Adjoint = Matrix<Scalar, DoF, DoF>;
- struct TangentAndTheta {
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW
- Tangent tangent;
- Scalar theta;
- };
-
-
-
-
- template <typename OtherDerived>
- using ReturnScalar = typename Eigen::ScalarBinaryOpTraits<
- Scalar, typename ;
- template <typename OtherDerived>
- using RxSO3Product = RxSO3<ReturnScalar<OtherDerived>>;
- template <typename PointDerived>
- using PointProduct = Vector3<ReturnScalar<PointDerived>>;
- template <typename HPointDerived>
- using HomogeneousPointProduct = Vector4<ReturnScalar<HPointDerived>>;
-
-
-
-
-
-
-
-
- SOPHUS_FUNC Adjoint Adj() const {
- Adjoint res;
- res.setIdentity();
- res.template topLeftCorner<3, 3>() = rotationMatrix();
- return res;
- }
-
-
- template <class NewScalarType>
- SOPHUS_FUNC RxSO3<NewScalarType> cast() const {
- return RxSO3<NewScalarType>(quaternion().template cast<NewScalarType>());
- }
-
-
-
-
-
-
-
-
- SOPHUS_FUNC Scalar* data() ; }
-
-
- SOPHUS_FUNC Scalar const* data()
- return ;
- }
-
-
- SOPHUS_FUNC RxSO3<Scalar> inverse()
- return ;
- }
-
-
-
-
-
-
-
-
-
-
- SOPHUS_FUNC Tangent log() const { return logAndTheta().tangent; }
-
-
- SOPHUS_FUNC TangentAndTheta logAndTheta() const {
- using std::log;
- Scalar scale ;
- TangentAndTheta result;
- result.tangent[3] = log(scale);
- auto omega_and_theta = SO3<Scalar>(quaternion()).logAndTheta();
- result.tangent.template head<3>() = omega_and_theta.tangent;
- result.theta = omega_and_theta.theta;
- return result;
- }
-
-
-
-
-
-
- SOPHUS_FUNC Transformation matrix() const {
- Transformation sR;
- Scalar const ;
- Scalar const ;
- Scalar const ;
- Scalar const ;
- Scalar const ;
- Scalar const ;
- Scalar const ;
- Scalar const ;
- Scalar const ;
- Scalar const ;
- Scalar const ;
- Scalar const ;
- Scalar const ;
- sR(0, 0) = vx_sq - vy_sq - vz_sq + w_sq;
- sR(1, 0) = two_vx_vy + two_vz_w;
- sR(2, 0) = two_vx_vz - two_vy_w;
- sR(0, 1) = two_vx_vy - two_vz_w;
- sR(1, 1) = -vx_sq + vy_sq - vz_sq + w_sq;
- sR(2, 1) = two_vx_w + two_vy_vz;
- sR(0, 2) = two_vx_vz + two_vy_w;
- sR(1, 2) = -two_vx_w + two_vy_vz;
- sR(2, 2) = -vx_sq - vy_sq + vz_sq + w_sq;
- return sR;
- }
-
-
- template <class OtherDerived>
- SOPHUS_FUNC RxSO3Base<Derived>& operator=(
- RxSO3Base<OtherDerived> const& other) {
- quaternion_nonconst() = other.quaternion();
- return *this;
- }
-
-
-
-
-
-
- template <typename OtherDerived>
- SOPHUS_FUNC RxSO3Product<OtherDerived> operator*(
- RxSO3Base<OtherDerived> const& other) const {
- using ResultT = ReturnScalar<OtherDerived>;
- typename RxSO3Product<OtherDerived>::QuaternionType result_quaternion(
- quaternion() * other.quaternion());
- ResultT scale = result_quaternion.squaredNorm();
- if (scale < Constants<ResultT>::epsilon()) {
- SOPHUS_ENSURE(scale > ResultT(0), "Scale must be greater zero.");
-
- result_quaternion.normalize();
- result_quaternion.coeffs() *= sqrt(Constants<Scalar>::epsilon());
- }
- return RxSO3Product<OtherDerived>(result_quaternion);
- }
-
-
-
-
-
-
-
-
- template <typename PointDerived,
- typename = typename std::enable_if<
- IsFixedSizeVector<PointDerived, 3>::value>::type>
- SOPHUS_FUNC PointProduct<PointDerived> operator*(
- Eigen::MatrixBase<PointDerived> const& p) const {
-
- Scalar scale ;
- PointProduct<PointDerived> two_vec_cross_p = quaternion().vec().cross(p);
- two_vec_cross_p += two_vec_cross_p;
- return scale * p + (quaternion().w() * two_vec_cross_p +
- quaternion().vec().cross(two_vec_cross_p));
- }
-
-
- template <typename HPointDerived,
- typename = typename std::enable_if<
- IsFixedSizeVector<HPointDerived, 4>::value>::type>
- SOPHUS_FUNC HomogeneousPointProduct<HPointDerived> operator*(
- Eigen::MatrixBase<HPointDerived> const& p) const {
- const auto rsp = *this * p.template head<3>();
- return HomogeneousPointProduct<HPointDerived>(rsp(0), rsp(1), rsp(2), p(3));
- }
-
-
-
-
-
-
-
-
- SOPHUS_FUNC Line operator*(Line const& l) const {
- return Line((*this) * l.origin(),
- (*this) * l.direction() / quaternion().squaredNorm());
- }
-
-
-
-
-
-
- template <typename OtherDerived,
- typename = typename std::enable_if<
- std::is_same<Scalar, ReturnScalar<OtherDerived>>::value>::type>
- SOPHUS_FUNC
- RxSO3Base<OtherDerived> const& other) {
- *static_cast<Derived*>(this) = *this ;
- return *this;
- }
-
-
-
-
-
- SOPHUS_FUNC Sophus::Vector<Scalar, num_parameters> params()
- return ;
- }
-
-
-
- SOPHUS_FUNC void setQuaternion(Eigen::Quaternion<Scalar> const& quat) {
- SOPHUS_ENSURE(quat.squaredNorm()
- Constants<Scalar>::epsilon(),
- "Scale factor must be greater-equal epsilon.");
- static_cast<Derived*>(this)->quaternion_nonconst() = quat;
- }
-
-
- SOPHUS_FUNC QuaternionType const& quaternion() const {
- return static_cast<Derived const*>(this)->quaternion();
- }
-
-
- SOPHUS_FUNC Transformation rotationMatrix() const {
- QuaternionTemporaryType norm_quad = quaternion();
- norm_quad.normalize();
- return norm_quad.toRotationMatrix();
- }
-
-
- SOPHUS_FUNC
- Scalar scale() ; }
-
-
- SOPHUS_FUNC void setRotationMatrix(Transformation const& R) {
- using std::sqrt;
- Scalar saved_scale ;
- quaternion_nonconst() = R;
- quaternion_nonconst().coeffs() *= sqrt(saved_scale);
- }
-
-
-
-
-
- SOPHUS_FUNC
- void setScale(Scalar const& scale) {
- using ;
- quaternion_nonconst().normalize();
- quaternion_nonconst().coeffs() *= sqrt(scale);
- }
-
-
-
-
-
- SOPHUS_FUNC void setScaledRotationMatrix(Transformation const& sR) {
- Transformation squared_sR = sR * sR.transpose();
- Scalar squared_scale
- Scalar(1. / 3.) *
- (squared_sR(0, 0) + squared_sR(1, 1) + squared_sR(2, 2));
- SOPHUS_ENSURE(squared_scale >= Constants<Scalar>::epsilon() *
- Constants<Scalar>::epsilon(),
- );
- Scalar scale = sqrt(squared_scale);
- quaternion_nonconst() = sR / scale;
- quaternion_nonconst().coeffs() *= sqrt(scale);
- }
-
-
- SOPHUS_FUNC void setSO3(SO3<Scalar> const& so3) {
- using ;
- Scalar saved_scale ;
- quaternion_nonconst() = so3.unit_quaternion();
- quaternion_nonconst().coeffs() *= sqrt(saved_scale);
- }
- SOPHUS_FUNC SO3<Scalar> so3() ; }
- private:
-
-
- SOPHUS_FUNC QuaternionType& quaternion_nonconst() {
- return static_cast<Derived*>(this)->quaternion_nonconst();
- }
- };
- template <class Scalar_, int Options>
- class RxSO3 : public RxSO3Base<RxSO3<Scalar_, Options>> {
- public:
- using Base = RxSO3Base<RxSO3<Scalar_, Options>>;
- using Scalar = Scalar_;
- using Transformation = typename Base::Transformation;
- using Point = typename Base::Point;
- using HomogeneousPoint = typename Base::HomogeneousPoint;
- using Tangent = typename Base::Tangent;
- using Adjoint = typename Base::Adjoint;
- using QuaternionMember = Eigen::Quaternion<Scalar, Options>;
-
- friend class RxSO3Base<RxSO3<Scalar_, Options>>;
- using Base::operator=;
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW
-
-
-
- SOPHUS_FUNC RxSO3()
- : quaternion_(Scalar(1), Scalar(0), Scalar(0), Scalar(0)) {}
-
-
- SOPHUS_FUNC ;
-
-
- template <class OtherDerived>
- SOPHUS_FUNC RxSO3(RxSO3Base<OtherDerived> const& other)
- : quaternion_(other.quaternion()) {}
-
-
-
-
-
- SOPHUS_FUNC explicit RxSO3(Transformation const& sR) {
- this->setScaledRotationMatrix(sR);
- }
-
-
-
-
-
- SOPHUS_FUNC RxSO3(Scalar const& scale, Transformation
- : quaternion_(R)
- SOPHUS_ENSURE(scale
- "Scale factor must be greater-equal epsilon.");
- using std::sqrt;
- quaternion_.coeffs() *= sqrt(scale);
- }
-
-
-
-
- SOPHUS_FUNC RxSO3(Scalar const& scale, SO3<Scalar> const& so3)
- : quaternion_(so3.unit_quaternion()) {
- SOPHUS_ENSURE(scale
- "Scale factor must be greater-equal epsilon.");
- using std::sqrt;
- quaternion_.coeffs() *= sqrt(scale);
- }
-
-
-
-
- template <class D>
- SOPHUS_FUNC explicit RxSO3(Eigen::QuaternionBase<D> const& quat)
- : quaternion_(quat) {
- static_assert(std::is_same<typename D::Scalar, Scalar>::value,
- "must be same Scalar type.");
- SOPHUS_ENSURE(quaternion_.squaredNorm() >= Constants<Scalar>::epsilon(),
- "Scale factor must be greater-equal epsilon.");
- }
-
-
- SOPHUS_FUNC QuaternionMember const& quaternion() const { return quaternion_; }
-
-
- SOPHUS_FUNC static Transformation Dxi_exp_x_matrix_at_0(int i) {
- return generator(i);
- }
-
-
-
-
-
-
-
-
-
-
- SOPHUS_FUNC static RxSO3<Scalar> exp(Tangent
- Scalar ;
- return expAndTheta(a, &theta);
- }
-
-
-
-
- SOPHUS_FUNC static RxSO3<Scalar> expAndTheta(Tangent
- Scalar* theta) {
- SOPHUS_ENSURE(theta ;
- using std::exp;
- using std::sqrt;
- Vector3<Scalar> const ;
- Scalar sigma ;
- Scalar sqrt_scale ;
- Eigen::Quaternion<Scalar> quat
- SO3<Scalar>::expAndTheta(omega, theta).unit_quaternion();
- quat.coeffs() *= sqrt_scale;
- return RxSO3<Scalar>(quat);
- }
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- SOPHUS_FUNC static Transformation generator(int i) {
- SOPHUS_ENSURE(i >= 0 && i <= 3, "i should be in range [0,3].");
- Tangent e;
- e.setZero();
- e[i] = Scalar(1);
- return hat(e);
- }
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- SOPHUS_FUNC static Transformation hat(Tangent const& a) {
- Transformation A;
-
- A << a(3), -a(2), a(1),
- a(2), a(3), -a(0),
- -a(1), a(0), a(3);
-
- return A;
- }
-
-
-
-
-
-
-
-
-
- SOPHUS_FUNC static Tangent lieBracket(Tangent const& a, Tangent const& b) {
- Vector3<Scalar> const ;
- Vector3<Scalar> const ;
- Vector4<Scalar> res;
- res.template head<3>() = omega1.cross(omega2);
- res[3] = Scalar(0);
- return res;
- }
-
-
-
-
-
- template <class UniformRandomBitGenerator>
- static RxSO3 sampleUniform(UniformRandomBitGenerator& generator) {
- std::uniform_real_distribution<Scalar> uniform(Scalar(-1), Scalar(1));
- using std::exp2;
- return RxSO3(exp2(uniform(generator)),
- SO3<Scalar>::sampleUniform(generator));
- }
-
-
-
-
-
-
-
-
-
-
-
-
-
- SOPHUS_FUNC static Tangent vee(Transformation const& Omega) {
- using std::abs;
- return Tangent(Omega(2, 1), Omega(0, 2), Omega(1, 0), Omega(0, 0));
- }
- protected:
- SOPHUS_FUNC QuaternionMember& quaternion_nonconst() { return quaternion_; }
- QuaternionMember quaternion_;
- };
- }
- namespace Eigen {
- template <class Scalar_, int Options>
- class Map<Sophus::RxSO3<Scalar_>, Options>
- : public Sophus::RxSO3Base<Map<Sophus::RxSO3<Scalar_>, Options>> {
- public:
- using Base = Sophus::RxSO3Base<Map<Sophus::RxSO3<Scalar_>, Options>>;
- using Scalar = Scalar_;
- using Transformation = typename Base::Transformation;
- using Point = typename Base::Point;
- using HomogeneousPoint = typename Base::HomogeneousPoint;
- using Tangent = typename Base::Tangent;
- using Adjoint = typename Base::Adjoint;
-
- friend class Sophus::RxSO3Base<Map<Sophus::RxSO3<Scalar_>, Options>>;
- using Base::operator=;
- using Base::operator*=;
- using Base::operator*;
- SOPHUS_FUNC Map(Scalar* coeffs) : quaternion_(coeffs)
-
-
- SOPHUS_FUNC
- Map<Eigen::Quaternion<Scalar>, Options> const& quaternion()
- return ;
- }
- protected:
- SOPHUS_FUNC Map<Eigen::Quaternion<Scalar>, Options>& quaternion_nonconst()
- return ;
- }
- Map<Eigen::Quaternion<Scalar>, Options> quaternion_;
- };
- template <class Scalar_, int Options>
- class Map<Sophus::RxSO3<Scalar_> const, Options>
- : public Sophus::RxSO3Base<Map<Sophus::RxSO3<Scalar_> const, Options>> {
- public:
- using Base = Sophus::RxSO3Base<Map<Sophus::RxSO3<Scalar_> const, Options>>;
- using Scalar = Scalar_;
- using Transformation = typename Base::Transformation;
- using Point = typename Base::Point;
- using HomogeneousPoint = typename Base::HomogeneousPoint;
- using Tangent = typename Base::Tangent;
- using Adjoint = typename Base::Adjoint;
- using Base::operator*=;
- using Base::operator*;
- SOPHUS_FUNC
- Map(Scalar const* coeffs) : quaternion_(coeffs)
-
-
- SOPHUS_FUNC
- Map<Eigen::Quaternion<Scalar> const, Options> const& quaternion()
- return ;
- }
- protected:
- Map<Eigen::Quaternion<Scalar> const, Options> const ;
- };
- }
- #endif
|