123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260 |
- import sympy
- import sys
- import unittest
- import sophus
- import functools
- class Se3:
- """ 3 dimensional group of rigid body transformations """
- def __init__(self, so3, t):
- """ internally represented by a unit quaternion q and a translation
- 3-vector """
- assert isinstance(so3, sophus.So3)
- assert isinstance(t, sympy.Matrix)
- assert t.shape == (3, 1), t.shape
- self.so3 = so3
- self.t = t
- @staticmethod
- def exp(v):
- """ exponential map """
- upsilon = v[0:3, :]
- omega = sophus.Vector3(v[3], v[4], v[5])
- so3 = sophus.So3.exp(omega)
- Omega = sophus.So3.hat(omega)
- Omega_sq = Omega * Omega
- theta = sympy.sqrt(sophus.squared_norm(omega))
- V = (sympy.Matrix.eye(3) +
- (1 - sympy.cos(theta)) / (theta**2) * Omega +
- (theta - sympy.sin(theta)) / (theta**3) * Omega_sq)
- return Se3(so3, V * upsilon)
- def log(self):
- omega = self.so3.log()
- theta = sympy.sqrt(sophus.squared_norm(omega))
- Omega = sophus.So3.hat(omega)
- half_theta = 0.5 * theta
- V_inv = sympy.Matrix.eye(3) - 0.5 * Omega + (1 - theta * sympy.cos(
- half_theta) / (2 * sympy.sin(half_theta))) / (theta * theta) *\
- (Omega * Omega)
- upsilon = V_inv * self.t
- return upsilon.col_join(omega)
- def __repr__(self):
- return "Se3: [" + repr(self.so3) + " " + repr(self.t)
- def inverse(self):
- invR = self.so3.inverse()
- return Se3(invR, invR * (-1 * self.t))
- @staticmethod
- def hat(v):
- """ R^6 => R^4x4 """
- """ returns 4x4-matrix representation ``Omega`` """
- upsilon = sophus.Vector3(v[0], v[1], v[2])
- omega = sophus.Vector3(v[3], v[4], v[5])
- return sophus.So3.hat(omega).\
- row_join(upsilon).\
- col_join(sympy.Matrix.zeros(1, 4))
-
- @staticmethod
- def vee(Omega):
- """ R^4x4 => R^6 """
- """ returns 6-vector representation of Lie algebra """
- """ This is the inverse of the hat-operator """
-
- head = sophus.Vector3(Omega[0,3], Omega[1,3], Omega[2,3])
- tail = sophus.So3.vee(Omega[0:3,0:3])
- upsilon_omega = \
- sophus.Vector6(head[0], head[1], head[2], tail[0], tail[1], tail[2])
- return upsilon_omega
-
- def matrix(self):
- """ returns matrix representation """
- R = self.so3.matrix()
- return (R.row_join(self.t)).col_join(sympy.Matrix(1, 4, [0, 0, 0, 1]))
- def __mul__(self, right):
- """ left-multiplication
- either rotation concatenation or point-transform """
- if isinstance(right, sympy.Matrix):
- assert right.shape == (3, 1), right.shape
- return self.so3 * right + self.t
- elif isinstance(right, Se3):
- r = self.so3 * right.so3
- t = self.t + self.so3 * right.t
- return Se3(r, t)
- assert False, "unsupported type: {0}".format(type(right))
- def __getitem__(self, key):
- """ We use the following convention [q0, q1, q2, q3, t0, t1, t2] """
- assert (key >= 0 and key < 7)
- if key < 4:
- return self.so3[key]
- else:
- return self.t[key - 4]
- @staticmethod
- def calc_Dx_exp_x(x):
- return sympy.Matrix(7, 6, lambda r, c:
- sympy.diff(Se3.exp(x)[r], x[c]))
- @staticmethod
- def Dx_exp_x_at_0():
- return sympy.Matrix([[0.0, 0.0, 0.0, 0.5, 0.0, 0.0],
- [0.0, 0.0, 0.0, 0.0, 0.5, 0.0],
- [0.0, 0.0, 0.0, 0.0, 0.0, 0.5],
- [0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
- [1.0, 0.0, 0.0, 0.0, 0.0, 0.0],
- [0.0, 1.0, 0.0, 0.0, 0.0, 0.0],
- [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]])
- def calc_Dx_this_mul_exp_x_at_0(self, x):
- v = Se3.exp(x)
- return sympy.Matrix(7, 6, lambda r, c:
- sympy.diff((self * Se3.exp(x))[r], x[c])). \
- subs(x[0], 0).subs(x[1], 0).subs(x[2], 0).\
- subs(x[3], 0).subs(x[4], 0).limit(x[5], 0)
- @staticmethod
- def calc_Dx_exp_x_at_0(x):
- return Se3.calc_Dx_exp_x(x).subs(x[0], 0).subs(x[1], 0).subs(x[2], 0).\
- subs(x[3], 0).subs(x[4], 0).limit(x[5], 0)
- @staticmethod
- def Dxi_x_matrix(x, i):
- if i < 4:
- return sophus.So3.Dxi_x_matrix(x, i).\
- row_join(sympy.Matrix.zeros(3, 1)).\
- col_join(sympy.Matrix.zeros(1, 4))
- M = sympy.Matrix.zeros(4, 4)
- M[i - 4, 3] = 1
- return M
- @staticmethod
- def calc_Dxi_x_matrix(x, i):
- return sympy.Matrix(4, 4, lambda r, c:
- sympy.diff(x.matrix()[r, c], x[i]))
- @staticmethod
- def Dxi_exp_x_matrix(x, i):
- T = Se3.exp(x)
- Dx_exp_x = Se3.calc_Dx_exp_x(x)
- l = [Dx_exp_x[j, i] * Se3.Dxi_x_matrix(T, j) for j in range(0, 7)]
- return functools.reduce((lambda a, b: a + b), l)
- @staticmethod
- def calc_Dxi_exp_x_matrix(x, i):
- return sympy.Matrix(4, 4, lambda r, c:
- sympy.diff(Se3.exp(x).matrix()[r, c], x[i]))
- @staticmethod
- def Dxi_exp_x_matrix_at_0(i):
- v = sophus.ZeroVector6()
- v[i] = 1
- return Se3.hat(v)
- @staticmethod
- def calc_Dxi_exp_x_matrix_at_0(x, i):
- return sympy.Matrix(4, 4, lambda r, c:
- sympy.diff(Se3.exp(x).matrix()[r, c], x[i])
- ).subs(x[0], 0).subs(x[1], 0).subs(x[2], 0).\
- subs(x[3], 0).subs(x[4], 0).limit(x[5], 0)
- class TestSe3(unittest.TestCase):
- def setUp(self):
- upsilon0, upsilon1, upsilon2, omega0, omega1, omega2 = sympy.symbols(
- 'upsilon[0], upsilon[1], upsilon[2], omega[0], omega[1], omega[2]',
- real=True)
- x, v0, v1, v2 = sympy.symbols('q.w() q.x() q.y() q.z()', real=True)
- p0, p1, p2 = sympy.symbols('p0 p1 p2', real=True)
- t0, t1, t2 = sympy.symbols('t[0] t[1] t[2]', real=True)
- v = sophus.Vector3(v0, v1, v2)
- self.upsilon_omega = sophus.Vector6(
- upsilon0, upsilon1, upsilon2, omega0, omega1, omega2)
- self.t = sophus.Vector3(t0, t1, t2)
- self.a = Se3(sophus.So3(sophus.Quaternion(x, v)), self.t)
- self.p = sophus.Vector3(p0, p1, p2)
- def test_exp_log(self):
- for v in [sophus.Vector6(0., 1, 0.5, 2., 1, 0.5),
- sophus.Vector6(0.1, 0.1, 0.1, 0., 1, 0.5),
- sophus.Vector6(0.01, 0.2, 0.03, 0.01, 0.2, 0.03)]:
- w = Se3.exp(v).log()
- for i in range(0, 3):
- self.assertAlmostEqual(v[i], w[i])
- def test_matrix(self):
- T_foo_bar = Se3.exp(self.upsilon_omega)
- Tmat_foo_bar = T_foo_bar.matrix()
- point_bar = self.p
- p1_foo = T_foo_bar * point_bar
- p2_foo = sophus.proj(Tmat_foo_bar * sophus.unproj(point_bar))
- self.assertEqual(sympy.simplify(p1_foo - p2_foo),
- sophus.ZeroVector3())
- def test_derivatives(self):
- self.assertEqual(sympy.simplify(
- Se3.calc_Dx_exp_x_at_0(self.upsilon_omega) -
- Se3.Dx_exp_x_at_0()),
- sympy.Matrix.zeros(7, 6))
- for i in range(0, 7):
- self.assertEqual(sympy.simplify(Se3.calc_Dxi_x_matrix(self.a, i) -
- Se3.Dxi_x_matrix(self.a, i)),
- sympy.Matrix.zeros(4, 4))
- for i in range(0, 6):
- self.assertEqual(sympy.simplify(
- Se3.Dxi_exp_x_matrix(self.upsilon_omega, i) -
- Se3.calc_Dxi_exp_x_matrix(self.upsilon_omega, i)),
- sympy.Matrix.zeros(4, 4))
- self.assertEqual(sympy.simplify(
- Se3.Dxi_exp_x_matrix_at_0(i) -
- Se3.calc_Dxi_exp_x_matrix_at_0(self.upsilon_omega, i)),
- sympy.Matrix.zeros(4, 4))
- def test_codegen(self):
- stream = sophus.cse_codegen(self.a.calc_Dx_exp_x(self.upsilon_omega))
- filename = "cpp_gencode/Se3_Dx_exp_x.cpp"
- # set to true to generate codegen files
- if False:
- file = open(filename, "w")
- for line in stream:
- file.write(line)
- file.close()
- else:
- file = open(filename, "r")
- file_lines = file.readlines()
- for i, line in enumerate(stream):
- self.assertEqual(line, file_lines[i])
- file.close()
- stream.close
- stream = sophus.cse_codegen(self.a.calc_Dx_this_mul_exp_x_at_0(
- self.upsilon_omega))
- filename = "cpp_gencode/Se3_Dx_this_mul_exp_x_at_0.cpp"
- # set to true to generate codegen files
- if False:
- file = open(filename, "w")
- for line in stream:
- file.write(line)
- file.close()
- else:
- file = open(filename, "r")
- file_lines = file.readlines()
- for i, line in enumerate(stream):
- self.assertEqual(line, file_lines[i])
- file.close()
- stream.close
- if __name__ == '__main__':
- unittest.main()
|