123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224 |
- import sympy
- import sys
- import unittest
- import sophus
- import functools
- class Se2:
- """ 2 dimensional group of rigid body transformations """
- def __init__(self, so2, t):
- """ internally represented by a unit complex number z and a translation
- 2-vector """
- self.so2 = so2
- self.t = t
- @staticmethod
- def exp(v):
- """ exponential map """
- theta = v[2]
- so2 = sophus.So2.exp(theta)
- a = so2.z.imag / theta
- b = (1 - so2.z.real) / theta
- t = sophus.Vector2(a * v[0] - b * v[1],
- b * v[0] + a * v[1])
- return Se2(so2, t)
- def log(self):
- theta = self.so2.log()
- halftheta = 0.5 * theta
- a = -(halftheta * self.so2.z.imag) / (self.so2.z.real - 1)
- V_inv = sympy.Matrix([[a, halftheta],
- [-halftheta, a]])
- upsilon = V_inv * self.t
- return sophus.Vector3(upsilon[0], upsilon[1], theta)
- def __repr__(self):
- return "Se2: [" + repr(self.so2) + " " + repr(self.t)
- @staticmethod
- def hat(v):
- upsilon = sophus.Vector2(v[0], v[1])
- theta = v[2]
- return sophus.So2.hat(theta).\
- row_join(upsilon).\
- col_join(sympy.Matrix.zeros(1, 3))
- def matrix(self):
- """ returns matrix representation """
- R = self.so2.matrix()
- return (R.row_join(self.t)).col_join(sympy.Matrix(1, 3, [0, 0, 1]))
- def __mul__(self, right):
- """ left-multiplication
- either rotation concatenation or point-transform """
- if isinstance(right, sympy.Matrix):
- assert right.shape == (2, 1), right.shape
- return self.so2 * right + self.t
- elif isinstance(right, Se2):
- return Se2(self.so2 * right.so2,
- self.t + self.so2 * right.t)
- assert False, "unsupported type: {0}".format(type(right))
- def __getitem__(self, key):
- """ We use the following convention [q0, q1, q2, q3, t0, t1, t2] """
- assert (key >= 0 and key < 4)
- if key < 2:
- return self.so2[key]
- else:
- return self.t[key - 2]
- @staticmethod
- def calc_Dx_exp_x(x):
- return sympy.Matrix(4, 3, lambda r, c:
- sympy.diff(Se2.exp(x)[r], x[c]))
- @staticmethod
- def Dx_exp_x_at_0():
- return sympy.Matrix([[0, 0, 0],
- [0, 0, 1],
- [1, 0, 0],
- [0, 1, 0]])
- def calc_Dx_this_mul_exp_x_at_0(self, x):
- v = Se2.exp(x)
- return sympy.Matrix(4, 3, lambda r, c:
- sympy.diff((self * Se2.exp(x))[r], x[c])). \
- subs(x[0], 0).subs(x[1], 0).limit(x[2], 0)
- @staticmethod
- def calc_Dx_exp_x_at_0(x):
- return Se2.calc_Dx_exp_x(x).subs(x[0], 0).subs(x[1], 0).limit(x[2], 0)
- @staticmethod
- def Dxi_x_matrix(x, i):
- if i < 2:
- return sophus.So2.Dxi_x_matrix(x, i).\
- row_join(sympy.Matrix.zeros(2, 1)).\
- col_join(sympy.Matrix.zeros(1, 3))
- M = sympy.Matrix.zeros(3, 3)
- M[i - 2, 2] = 1
- return M
- @staticmethod
- def calc_Dxi_x_matrix(x, i):
- return sympy.Matrix(3, 3, lambda r, c:
- sympy.diff(x.matrix()[r, c], x[i]))
- @staticmethod
- def Dxi_exp_x_matrix(x, i):
- T = Se2.exp(x)
- Dx_exp_x = Se2.calc_Dx_exp_x(x)
- l = [Dx_exp_x[j, i] * Se2.Dxi_x_matrix(T, j) for j in range(0, 4)]
- return functools.reduce((lambda a, b: a + b), l)
- @staticmethod
- def calc_Dxi_exp_x_matrix(x, i):
- return sympy.Matrix(3, 3, lambda r, c:
- sympy.diff(Se2.exp(x).matrix()[r, c], x[i]))
- @staticmethod
- def Dxi_exp_x_matrix_at_0(i):
- v = sophus.ZeroVector3()
- v[i] = 1
- return Se2.hat(v)
- @staticmethod
- def calc_Dxi_exp_x_matrix_at_0(x, i):
- return sympy.Matrix(3, 3, lambda r, c:
- sympy.diff(Se2.exp(x).matrix()[r, c], x[i])
- ).subs(x[0], 0).subs(x[1], 0).limit(x[2], 0)
- class TestSe2(unittest.TestCase):
- def setUp(self):
- upsilon0, upsilon1, theta = sympy.symbols(
- 'upsilon[0], upsilon[1], theta',
- real=True)
- x, y = sympy.symbols('c[0] c[1]', real=True)
- p0, p1 = sympy.symbols('p0 p1', real=True)
- t0, t1 = sympy.symbols('t[0] t[1]', real=True)
- self.upsilon_theta = sophus.Vector3(
- upsilon0, upsilon1, theta)
- self.t = sophus.Vector2(t0, t1)
- self.a = Se2(sophus.So2(sophus.Complex(x, y)), self.t)
- self.p = sophus.Vector2(p0, p1)
- def test_exp_log(self):
- for v in [sophus.Vector3(0., 1, 0.5),
- sophus.Vector3(0.1, 0.1, 0.1),
- sophus.Vector3(0.01, 0.2, 0.03)]:
- w = Se2.exp(v).log()
- for i in range(0, 3):
- self.assertAlmostEqual(v[i], w[i])
- def test_matrix(self):
- T_foo_bar = Se2.exp(self.upsilon_theta)
- Tmat_foo_bar = T_foo_bar.matrix()
- point_bar = self.p
- p1_foo = T_foo_bar * point_bar
- p2_foo = sophus.proj(Tmat_foo_bar * sophus.unproj(point_bar))
- self.assertEqual(sympy.simplify(p1_foo - p2_foo),
- sophus.ZeroVector2())
- def test_derivatives(self):
- self.assertEqual(sympy.simplify(
- Se2.calc_Dx_exp_x_at_0(self.upsilon_theta) -
- Se2.Dx_exp_x_at_0()),
- sympy.Matrix.zeros(4, 3))
- for i in range(0, 4):
- self.assertEqual(sympy.simplify(Se2.calc_Dxi_x_matrix(self.a, i) -
- Se2.Dxi_x_matrix(self.a, i)),
- sympy.Matrix.zeros(3, 3))
- for i in range(0, 3):
- self.assertEqual(sympy.simplify(
- Se2.Dxi_exp_x_matrix(self.upsilon_theta, i) -
- Se2.calc_Dxi_exp_x_matrix(self.upsilon_theta, i)),
- sympy.Matrix.zeros(3, 3))
- self.assertEqual(sympy.simplify(
- Se2.Dxi_exp_x_matrix_at_0(i) -
- Se2.calc_Dxi_exp_x_matrix_at_0(self.upsilon_theta, i)),
- sympy.Matrix.zeros(3, 3))
- def test_codegen(self):
- stream = sophus.cse_codegen(Se2.calc_Dx_exp_x(self.upsilon_theta))
- filename = "cpp_gencode/Se2_Dx_exp_x.cpp"
- # set to true to generate codegen files
- if False:
- file = open(filename, "w")
- for line in stream:
- file.write(line)
- file.close()
- else:
- file = open(filename, "r")
- file_lines = file.readlines()
- for i, line in enumerate(stream):
- self.assertEqual(line, file_lines[i])
- file.close()
- stream.close
- stream = sophus.cse_codegen(self.a.calc_Dx_this_mul_exp_x_at_0(
- self.upsilon_theta))
- filename = "cpp_gencode/Se2_Dx_this_mul_exp_x_at_0.cpp"
- # set to true to generate codegen files
- if False:
- file = open(filename, "w")
- for line in stream:
- file.write(line)
- file.close()
- else:
- file = open(filename, "r")
- file_lines = file.readlines()
- for i, line in enumerate(stream):
- self.assertEqual(line, file_lines[i])
- file.close()
- stream.close
- if __name__ == '__main__':
- unittest.main()
|