123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379 |
- /**
- * This file is part of ORB-SLAM3
- *
- * Copyright (C) 2017-2021 Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
- * Copyright (C) 2014-2016 Raúl Mur-Artal, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
- *
- * ORB-SLAM3 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
- * License as published by the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * ORB-SLAM3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
- * the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along with ORB-SLAM3.
- * If not, see <http://www.gnu.org/licenses/>.
- */
- #include <signal.h>
- #include <stdlib.h>
- #include <iostream>
- #include <algorithm>
- #include <fstream>
- #include <chrono>
- #include <ctime>
- #include <sstream>
- #include <opencv2/core/core.hpp>
- #include <librealsense2/rs.hpp>
- #include <System.h>
- #include <condition_variable>
- #include "ImuTypes.h"
- using namespace std;
- bool b_continue_session;
- void exit_loop_handler(int s){
- cout << "Finishing session" << endl;
- b_continue_session = false;
- }
- rs2_vector interpolateMeasure(const double target_time,
- const rs2_vector current_data, const double current_time,
- const rs2_vector prev_data, const double prev_time);
- int main(int argc, char **argv)
- {
- if (argc < 3 || argc > 4) {
- cerr << endl
- << "Usage: ./mono_inertial_realsense_t265 path_to_vocabulary path_to_settings (trajectory_file_name)"
- << endl;
- return 1;
- }
- string file_name;
- bool bFileName = false;
- if (argc == 4) {
- file_name = string(argv[argc - 1]);
- bFileName = true;
- }
- ORB_SLAM3::System SLAM(argv[1],argv[2],ORB_SLAM3::System::IMU_MONOCULAR, true, 0, file_name);
- float imageScale = SLAM.GetImageScale();
- struct sigaction sigIntHandler;
- sigIntHandler.sa_handler = exit_loop_handler;
- sigemptyset(&sigIntHandler.sa_mask);
- sigIntHandler.sa_flags = 0;
- sigaction(SIGINT, &sigIntHandler, NULL);
- b_continue_session = true;
- double offset = 0; // ms
- // Declare RealSense pipeline, encapsulating the actual device and sensors
- rs2::pipeline pipe;
- // Create a configuration for configuring the pipeline with a non default profile
- rs2::config cfg;
- // Enable both image strams (for some reason realsense does not allow to enable just one)
- cfg.enable_stream(RS2_STREAM_FISHEYE, 1, RS2_FORMAT_Y8,30);
- cfg.enable_stream(RS2_STREAM_FISHEYE, 2, RS2_FORMAT_Y8,30);
- // Add streams of gyro and accelerometer to configuration
- cfg.enable_stream(RS2_STREAM_ACCEL, RS2_FORMAT_MOTION_XYZ32F);
- cfg.enable_stream(RS2_STREAM_GYRO, RS2_FORMAT_MOTION_XYZ32F);
- std::mutex imu_mutex;
- std::condition_variable cond_image_rec;
- vector<double> v_accel_timestamp;
- vector<rs2_vector> v_accel_data;
- vector<double> v_gyro_timestamp;
- vector<rs2_vector> v_gyro_data;
- double prev_accel_timestamp = 0;
- rs2_vector prev_accel_data;
- double current_accel_timestamp = 0;
- rs2_vector current_accel_data;
- vector<double> v_accel_timestamp_sync;
- vector<rs2_vector> v_accel_data_sync;
- cv::Mat imCV,imCV_right;
- int width_img, height_img; //width_img = 848, height_img = 800;
- double timestamp_image = -1.0;
- bool image_ready = false;
- int count_im_buffer = 0; // count dropped frames
- auto imu_callback = [&](const rs2::frame& frame){
- std::unique_lock<std::mutex> lock(imu_mutex);
- if(rs2::frameset fs = frame.as<rs2::frameset>()){
- count_im_buffer++;
- double new_timestamp_image = fs.get_timestamp()*1e-3;
- if(abs(timestamp_image-new_timestamp_image)<0.001){
- // cout << "Two frames with the same timeStamp!!!\n";
- count_im_buffer--;
- return;
- }
- rs2::video_frame color_frame = fs.get_fisheye_frame(1);
- // rs2::video_frame color_frame_right = fs.get_fisheye_frame(2);
- imCV = cv::Mat(cv::Size(width_img, height_img), CV_8U, (void*)(color_frame.get_data()), cv::Mat::AUTO_STEP);
- timestamp_image = new_timestamp_image;
- // fs.get_timestamp()*1e-3;
- image_ready = true;
- while(v_gyro_timestamp.size() > v_accel_timestamp_sync.size()){
- int index = v_accel_timestamp_sync.size();
- double target_time = v_gyro_timestamp[index];
- rs2_vector interp_data = interpolateMeasure(target_time, current_accel_data, current_accel_timestamp, prev_accel_data, prev_accel_timestamp);
- v_accel_data_sync.push_back(interp_data);
- v_accel_timestamp_sync.push_back(target_time);
- }
- lock.unlock();
- cond_image_rec.notify_all();
- }
- else if (rs2::motion_frame m_frame = frame.as<rs2::motion_frame>()){
- if (m_frame.get_profile().stream_name() == "Gyro"){
- // It runs at 200Hz
- v_gyro_data.push_back(m_frame.get_motion_data());
- v_gyro_timestamp.push_back((m_frame.get_timestamp()+offset)*1e-3);
- }
- else if (m_frame.get_profile().stream_name() == "Accel"){
- // It runs at 60Hz
- prev_accel_timestamp = current_accel_timestamp;
- prev_accel_data = current_accel_data;
- current_accel_data = m_frame.get_motion_data();
- current_accel_timestamp = (m_frame.get_timestamp()+offset)*1e-3;
- while(v_gyro_timestamp.size() > v_accel_timestamp_sync.size())
- {
- int index = v_accel_timestamp_sync.size();
- double target_time = v_gyro_timestamp[index];
- rs2_vector interp_data = interpolateMeasure(target_time, current_accel_data, current_accel_timestamp,
- prev_accel_data, prev_accel_timestamp);
- v_accel_data_sync.push_back(interp_data);
- v_accel_timestamp_sync.push_back(target_time);
- }
- }
- }
- };
- rs2::pipeline_profile pipe_profile = pipe.start(cfg, imu_callback);
- rs2::stream_profile cam_stream = pipe_profile.get_stream(RS2_STREAM_FISHEYE, 1);
- rs2::stream_profile imu_stream = pipe_profile.get_stream(RS2_STREAM_GYRO);
- float* Rbc = cam_stream.get_extrinsics_to(imu_stream).rotation;
- float* tbc = cam_stream.get_extrinsics_to(imu_stream).translation;
- std::cout << "Tbc = " << std::endl;
- for(int i = 0; i<3; i++){
- for(int j = 0; j<3; j++)
- std::cout << Rbc[i*3 + j] << ", ";
- std::cout << tbc[i] << "\n";
- }
- rs2_intrinsics intrinsics_cam = cam_stream.as<rs2::video_stream_profile>().get_intrinsics();
- width_img = intrinsics_cam.width;
- height_img = intrinsics_cam.height;
- std::cout << " fx = " << intrinsics_cam.fx << std::endl;
- std::cout << " fy = " << intrinsics_cam.fy << std::endl;
- std::cout << " cx = " << intrinsics_cam.ppx << std::endl;
- std::cout << " cy = " << intrinsics_cam.ppy << std::endl;
- std::cout << " height = " << intrinsics_cam.height << std::endl;
- std::cout << " width = " << intrinsics_cam.width << std::endl;
- std::cout << " Coeff = " << intrinsics_cam.coeffs[0] << ", " << intrinsics_cam.coeffs[1] << ", " <<
- intrinsics_cam.coeffs[2] << ", " << intrinsics_cam.coeffs[3] << ", " << intrinsics_cam.coeffs[4] << ", " << std::endl;
- std::cout << " Model = " << intrinsics_cam.model << std::endl;
- // Create SLAM system. It initializes all system threads and gets ready to process frames.
- vector<ORB_SLAM3::IMU::Point> vImuMeas;
- double timestamp;
- cv::Mat im;
- // Clear IMU vectors
- v_gyro_data.clear();
- v_gyro_timestamp.clear();
- v_accel_data_sync.clear();
- v_accel_timestamp_sync.clear();
- double t_resize = 0.f;
- double t_track = 0.f;
- std::chrono::steady_clock::time_point time_Start_Process;
- while (!SLAM.isShutDown()){
- std::vector<rs2_vector> vGyro;
- std::vector<double> vGyro_times;
- std::vector<rs2_vector> vAccel;
- std::vector<double> vAccel_times;
- {
- std::unique_lock<std::mutex> lk(imu_mutex);
- while(!image_ready)
- cond_image_rec.wait(lk);
- #ifdef COMPILEDWITHC14
- std::chrono::steady_clock::time_point time_Start_Process = std::chrono::steady_clock::now();
- #else
- std::chrono::monotonic_clock::time_point time_Start_Process = std::chrono::monotonic_clock::now();
- #endif
- if(count_im_buffer>1)
- cout << count_im_buffer -1 << " dropped frs\n";
- count_im_buffer = 0;
- while(v_gyro_timestamp.size() > v_accel_timestamp_sync.size()){
- int index = v_accel_timestamp_sync.size();
- double target_time = v_gyro_timestamp[index];
- rs2_vector interp_data = interpolateMeasure(target_time, current_accel_data, current_accel_timestamp, prev_accel_data, prev_accel_timestamp);
- v_accel_data_sync.push_back(interp_data);
- v_accel_timestamp_sync.push_back(target_time);
- }
- if(imageScale == 1.f)
- {
- im = imCV.clone();
- }
- else
- {
- #ifdef REGISTER_TIMES
- #ifdef COMPILEDWITHC14
- std::chrono::steady_clock::time_point t_Start_Resize = std::chrono::steady_clock::now();
- #else
- std::chrono::monotonic_clock::time_point t_Start_Resize = std::chrono::monotonic_clock::now();
- #endif
- #endif
- int width = imCV.cols * imageScale;
- int height = imCV.rows * imageScale;
- cv::resize(imCV, im, cv::Size(width, height));
- #ifdef REGISTER_TIMES
- #ifdef COMPILEDWITHC14
- std::chrono::steady_clock::time_point t_End_Resize = std::chrono::steady_clock::now();
- #else
- std::chrono::monotonic_clock::time_point t_End_Resize = std::chrono::monotonic_clock::now();
- #endif
- t_resize = std::chrono::duration_cast<std::chrono::duration<double,std::milli> >(t_End_Resize - t_Start_Resize).count();
- SLAM.InsertResizeTime(t_resize);
- #endif
- }
- // Copy the IMU data
- vGyro = v_gyro_data;
- vGyro_times = v_gyro_timestamp;
- vAccel = v_accel_data_sync;
- vAccel_times = v_accel_timestamp_sync;
- timestamp = timestamp_image;
- // Clear IMU vectors
- v_gyro_data.clear();
- v_gyro_timestamp.clear();
- v_accel_data_sync.clear();
- v_accel_timestamp_sync.clear();
- image_ready = false;
- }
- for(int i=0; i<vGyro.size(); ++i){
- ORB_SLAM3::IMU::Point lastPoint(vAccel[i].x, vAccel[i].y, vAccel[i].z,
- vGyro[i].x, vGyro[i].y, vGyro[i].z,
- vGyro_times[i]);
- vImuMeas.push_back(lastPoint);
- if(isnan(vAccel[i].x) || isnan(vAccel[i].y) || isnan(vAccel[i].z) ||
- isnan(vGyro[i].x) || isnan(vGyro[i].y) || isnan(vGyro[i].z) ||
- isnan(vGyro_times[i])){
- //cerr << "NAN AT MAIN" << endl;
- exit(-1);
- }
- }
- #ifdef COMPILEDWITHC14
- std::chrono::steady_clock::time_point t_Start_Track = std::chrono::steady_clock::now();
- #else
- std::chrono::monotonic_clock::time_point t_Start_Track = std::chrono::monotonic_clock::now();
- #endif
- // Pass the image to the SLAM system
- SLAM.TrackMonocular(im, timestamp, vImuMeas);
- #ifdef COMPILEDWITHC14
- std::chrono::steady_clock::time_point t_End_Track = std::chrono::steady_clock::now();
- #else
- std::chrono::monotonic_clock::time_point t_End_Track = std::chrono::monotonic_clock::now();
- #endif
- #ifdef REGISTER_TIMES
- t_track = t_resize + std::chrono::duration_cast<std::chrono::duration<double,std::milli> >(t_End_Track - t_Start_Track).count();
- SLAM.InsertTrackTime(t_track);
- #endif
- double timeProcess = std::chrono::duration_cast<std::chrono::duration<double,std::milli> >(t_Start_Track - time_Start_Process).count();
- double timeSLAM = std::chrono::duration_cast<std::chrono::duration<double,std::milli> >(t_End_Track - t_Start_Track).count();
- // cout << "Time process: " << timeProcess << endl;
- // cout << "Time SLAM: " << timeSLAM << endl;
- // Clear the previous IMU measurements to load the new ones
- vImuMeas.clear();
- }
- SLAM.Shutdown();
- return 0;
- }
- rs2_vector interpolateMeasure(const double target_time,
- const rs2_vector current_data, const double current_time,
- const rs2_vector prev_data, const double prev_time){
- // If there are not previous information, the current data is propagated
- if(prev_time == 0){
- return current_data;
- }
- rs2_vector increment;
- rs2_vector value_interp;
- if(target_time > current_time) {
- value_interp = current_data;
- }
- else if(target_time > prev_time){
- increment.x = current_data.x - prev_data.x;
- increment.y = current_data.y - prev_data.y;
- increment.z = current_data.z - prev_data.z;
- double factor = (target_time - prev_time) / (current_time - prev_time);
- value_interp.x = prev_data.x + increment.x * factor;
- value_interp.y = prev_data.y + increment.y * factor;
- value_interp.z = prev_data.z + increment.z * factor;
- // zero interpolation
- value_interp = current_data;
- }
- else {
- value_interp = prev_data;
- }
- return value_interp;
- }
|