123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056 |
- /**
- * This file is part of ORB-SLAM3
- *
- * Copyright (C) 2017-2021 Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
- * Copyright (C) 2014-2016 Raúl Mur-Artal, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
- *
- * ORB-SLAM3 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
- * License as published by the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * ORB-SLAM3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
- * the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along with ORB-SLAM3.
- * If not, see <http://www.gnu.org/licenses/>.
- */
- /******************************************************************************
- * Author: Steffen Urban *
- * Contact: urbste@gmail.com *
- * License: Copyright (c) 2016 Steffen Urban, ANU. All rights reserved. *
- * *
- * Redistribution and use in source and binary forms, with or without *
- * modification, are permitted provided that the following conditions *
- * are met: *
- * * Redistributions of source code must retain the above copyright *
- * notice, this list of conditions and the following disclaimer. *
- * * Redistributions in binary form must reproduce the above copyright *
- * notice, this list of conditions and the following disclaimer in the *
- * documentation and/or other materials provided with the distribution. *
- * * Neither the name of ANU nor the names of its contributors may be *
- * used to endorse or promote products derived from this software without *
- * specific prior written permission. *
- * *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"*
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE *
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE *
- * ARE DISCLAIMED. IN NO EVENT SHALL ANU OR THE CONTRIBUTORS BE LIABLE *
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL *
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR *
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER *
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT *
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY *
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF *
- * SUCH DAMAGE. *
- ******************************************************************************/
- #include "MLPnPsolver.h"
- #include <Eigen/Sparse>
- namespace ORB_SLAM3 {
- MLPnPsolver::MLPnPsolver(const Frame &F, const vector<MapPoint *> &vpMapPointMatches):
- mnInliersi(0), mnIterations(0), mnBestInliers(0), N(0), mpCamera(F.mpCamera){
- mvpMapPointMatches = vpMapPointMatches;
- mvBearingVecs.reserve(F.mvpMapPoints.size());
- mvP2D.reserve(F.mvpMapPoints.size());
- mvSigma2.reserve(F.mvpMapPoints.size());
- mvP3Dw.reserve(F.mvpMapPoints.size());
- mvKeyPointIndices.reserve(F.mvpMapPoints.size());
- mvAllIndices.reserve(F.mvpMapPoints.size());
- int idx = 0;
- for(size_t i = 0, iend = mvpMapPointMatches.size(); i < iend; i++){
- MapPoint* pMP = vpMapPointMatches[i];
- if(pMP){
- if(!pMP -> isBad()){
- if(i >= F.mvKeysUn.size()) continue;
- const cv::KeyPoint &kp = F.mvKeysUn[i];
- mvP2D.push_back(kp.pt);
- mvSigma2.push_back(F.mvLevelSigma2[kp.octave]);
- //Bearing vector should be normalized
- cv::Point3f cv_br = mpCamera->unproject(kp.pt);
- cv_br /= cv_br.z;
- bearingVector_t br(cv_br.x,cv_br.y,cv_br.z);
- mvBearingVecs.push_back(br);
- //3D coordinates
- Eigen::Matrix<float,3,1> posEig = pMP -> GetWorldPos();
- point_t pos(posEig(0),posEig(1),posEig(2));
- mvP3Dw.push_back(pos);
- mvKeyPointIndices.push_back(i);
- mvAllIndices.push_back(idx);
- idx++;
- }
- }
- }
- SetRansacParameters();
- }
- //RANSAC methods
- bool MLPnPsolver::iterate(int nIterations, bool &bNoMore, vector<bool> &vbInliers, int &nInliers, Eigen::Matrix4f &Tout){
- Tout.setIdentity();
- bNoMore = false;
- vbInliers.clear();
- nInliers=0;
- if(N<mRansacMinInliers)
- {
- bNoMore = true;
- return false;
- }
- vector<size_t> vAvailableIndices;
- int nCurrentIterations = 0;
- while(mnIterations<mRansacMaxIts || nCurrentIterations<nIterations)
- {
- nCurrentIterations++;
- mnIterations++;
- vAvailableIndices = mvAllIndices;
- //Bearing vectors and 3D points used for this ransac iteration
- bearingVectors_t bearingVecs(mRansacMinSet);
- points_t p3DS(mRansacMinSet);
- vector<int> indexes(mRansacMinSet);
- // Get min set of points
- for(short i = 0; i < mRansacMinSet; ++i)
- {
- int randi = DUtils::Random::RandomInt(0, vAvailableIndices.size()-1);
- int idx = vAvailableIndices[randi];
- bearingVecs[i] = mvBearingVecs[idx];
- p3DS[i] = mvP3Dw[idx];
- indexes[i] = i;
- vAvailableIndices[randi] = vAvailableIndices.back();
- vAvailableIndices.pop_back();
- }
- //By the moment, we are using MLPnP without covariance info
- cov3_mats_t covs(1);
- //Result
- transformation_t result;
- // Compute camera pose
- computePose(bearingVecs,p3DS,covs,indexes,result);
- //Save result
- mRi[0][0] = result(0,0);
- mRi[0][1] = result(0,1);
- mRi[0][2] = result(0,2);
- mRi[1][0] = result(1,0);
- mRi[1][1] = result(1,1);
- mRi[1][2] = result(1,2);
- mRi[2][0] = result(2,0);
- mRi[2][1] = result(2,1);
- mRi[2][2] = result(2,2);
- mti[0] = result(0,3);mti[1] = result(1,3);mti[2] = result(2,3);
- // Check inliers
- CheckInliers();
- if(mnInliersi>=mRansacMinInliers)
- {
- // If it is the best solution so far, save it
- if(mnInliersi>mnBestInliers)
- {
- mvbBestInliers = mvbInliersi;
- mnBestInliers = mnInliersi;
- cv::Mat Rcw(3,3,CV_64F,mRi);
- cv::Mat tcw(3,1,CV_64F,mti);
- Rcw.convertTo(Rcw,CV_32F);
- tcw.convertTo(tcw,CV_32F);
- mBestTcw.setIdentity();
- mBestTcw.block<3,3>(0,0) = Converter::toMatrix3f(Rcw);
- mBestTcw.block<3,1>(0,3) = Converter::toVector3f(tcw);
- Eigen::Matrix<double, 3, 3, Eigen::RowMajor> eigRcw(mRi[0]);
- Eigen::Vector3d eigtcw(mti);
- }
- if(Refine())
- {
- nInliers = mnRefinedInliers;
- vbInliers = vector<bool>(mvpMapPointMatches.size(),false);
- for(int i=0; i<N; i++)
- {
- if(mvbRefinedInliers[i])
- vbInliers[mvKeyPointIndices[i]] = true;
- }
- Tout = mRefinedTcw;
- return true;
- }
- }
- }
- if(mnIterations>=mRansacMaxIts)
- {
- bNoMore=true;
- if(mnBestInliers>=mRansacMinInliers)
- {
- nInliers=mnBestInliers;
- vbInliers = vector<bool>(mvpMapPointMatches.size(),false);
- for(int i=0; i<N; i++)
- {
- if(mvbBestInliers[i])
- vbInliers[mvKeyPointIndices[i]] = true;
- }
- Tout = mBestTcw;
- return true;
- }
- }
- return false;
- }
- void MLPnPsolver::SetRansacParameters(double probability, int minInliers, int maxIterations, int minSet, float epsilon, float th2){
- mRansacProb = probability;
- mRansacMinInliers = minInliers;
- mRansacMaxIts = maxIterations;
- mRansacEpsilon = epsilon;
- mRansacMinSet = minSet;
- N = mvP2D.size(); // number of correspondences
- mvbInliersi.resize(N);
- // Adjust Parameters according to number of correspondences
- int nMinInliers = N*mRansacEpsilon;
- if(nMinInliers<mRansacMinInliers)
- nMinInliers=mRansacMinInliers;
- if(nMinInliers<minSet)
- nMinInliers=minSet;
- mRansacMinInliers = nMinInliers;
- if(mRansacEpsilon<(float)mRansacMinInliers/N)
- mRansacEpsilon=(float)mRansacMinInliers/N;
- // Set RANSAC iterations according to probability, epsilon, and max iterations
- int nIterations;
- if(mRansacMinInliers==N)
- nIterations=1;
- else
- nIterations = ceil(log(1-mRansacProb)/log(1-pow(mRansacEpsilon,3)));
- mRansacMaxIts = max(1,min(nIterations,mRansacMaxIts));
- mvMaxError.resize(mvSigma2.size());
- for(size_t i=0; i<mvSigma2.size(); i++)
- mvMaxError[i] = mvSigma2[i]*th2;
- }
- void MLPnPsolver::CheckInliers(){
- mnInliersi=0;
- for(int i=0; i<N; i++)
- {
- point_t p = mvP3Dw[i];
- cv::Point3f P3Dw(p(0),p(1),p(2));
- cv::Point2f P2D = mvP2D[i];
- float xc = mRi[0][0]*P3Dw.x+mRi[0][1]*P3Dw.y+mRi[0][2]*P3Dw.z+mti[0];
- float yc = mRi[1][0]*P3Dw.x+mRi[1][1]*P3Dw.y+mRi[1][2]*P3Dw.z+mti[1];
- float zc = mRi[2][0]*P3Dw.x+mRi[2][1]*P3Dw.y+mRi[2][2]*P3Dw.z+mti[2];
- cv::Point3f P3Dc(xc,yc,zc);
- cv::Point2f uv = mpCamera->project(P3Dc);
- float distX = P2D.x-uv.x;
- float distY = P2D.y-uv.y;
- float error2 = distX*distX+distY*distY;
- if(error2<mvMaxError[i])
- {
- mvbInliersi[i]=true;
- mnInliersi++;
- }
- else
- {
- mvbInliersi[i]=false;
- }
- }
- }
- bool MLPnPsolver::Refine(){
- vector<int> vIndices;
- vIndices.reserve(mvbBestInliers.size());
- for(size_t i=0; i<mvbBestInliers.size(); i++)
- {
- if(mvbBestInliers[i])
- {
- vIndices.push_back(i);
- }
- }
- //Bearing vectors and 3D points used for this ransac iteration
- bearingVectors_t bearingVecs;
- points_t p3DS;
- vector<int> indexes;
- for(size_t i=0; i<vIndices.size(); i++)
- {
- int idx = vIndices[i];
- bearingVecs.push_back(mvBearingVecs[idx]);
- p3DS.push_back(mvP3Dw[idx]);
- indexes.push_back(i);
- }
- //By the moment, we are using MLPnP without covariance info
- cov3_mats_t covs(1);
- //Result
- transformation_t result;
- // Compute camera pose
- computePose(bearingVecs,p3DS,covs,indexes,result);
- // Check inliers
- CheckInliers();
- mnRefinedInliers =mnInliersi;
- mvbRefinedInliers = mvbInliersi;
- if(mnInliersi>mRansacMinInliers)
- {
- cv::Mat Rcw(3,3,CV_64F,mRi);
- cv::Mat tcw(3,1,CV_64F,mti);
- Rcw.convertTo(Rcw,CV_32F);
- tcw.convertTo(tcw,CV_32F);
- mRefinedTcw.setIdentity();
- mRefinedTcw.block<3,3>(0,0) = Converter::toMatrix3f(Rcw);
- mRefinedTcw.block<3,1>(0,3) = Converter::toVector3f(tcw);
- Eigen::Matrix<double, 3, 3, Eigen::RowMajor> eigRcw(mRi[0]);
- Eigen::Vector3d eigtcw(mti);
- return true;
- }
- return false;
- }
- //MLPnP methods
- void MLPnPsolver::computePose(const bearingVectors_t &f, const points_t &p, const cov3_mats_t &covMats,
- const std::vector<int> &indices, transformation_t &result) {
- size_t numberCorrespondences = indices.size();
- assert(numberCorrespondences > 5);
- bool planar = false;
- // compute the nullspace of all vectors
- std::vector<Eigen::MatrixXd> nullspaces(numberCorrespondences);
- Eigen::MatrixXd points3(3, numberCorrespondences);
- points_t points3v(numberCorrespondences);
- points4_t points4v(numberCorrespondences);
- for (size_t i = 0; i < numberCorrespondences; i++) {
- bearingVector_t f_current = f[indices[i]];
- points3.col(i) = p[indices[i]];
- // nullspace of right vector
- Eigen::JacobiSVD<Eigen::MatrixXd, Eigen::HouseholderQRPreconditioner>
- svd_f(f_current.transpose(), Eigen::ComputeFullV);
- nullspaces[i] = svd_f.matrixV().block(0, 1, 3, 2);
- points3v[i] = p[indices[i]];
- }
- //////////////////////////////////////
- // 1. test if we have a planar scene
- //////////////////////////////////////
- Eigen::Matrix3d planarTest = points3 * points3.transpose();
- Eigen::FullPivHouseholderQR<Eigen::Matrix3d> rankTest(planarTest);
- Eigen::Matrix3d eigenRot;
- eigenRot.setIdentity();
- // if yes -> transform points to new eigen frame
- //if (minEigenVal < 1e-3 || minEigenVal == 0.0)
- //rankTest.setThreshold(1e-10);
- if (rankTest.rank() == 2) {
- planar = true;
- // self adjoint is faster and more accurate than general eigen solvers
- // also has closed form solution for 3x3 self-adjoint matrices
- // in addition this solver sorts the eigenvalues in increasing order
- Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> eigen_solver(planarTest);
- eigenRot = eigen_solver.eigenvectors().real();
- eigenRot.transposeInPlace();
- for (size_t i = 0; i < numberCorrespondences; i++)
- points3.col(i) = eigenRot * points3.col(i);
- }
- //////////////////////////////////////
- // 2. stochastic model
- //////////////////////////////////////
- Eigen::SparseMatrix<double> P(2 * numberCorrespondences,
- 2 * numberCorrespondences);
- bool use_cov = false;
- P.setIdentity(); // standard
- // if we do have covariance information
- // -> fill covariance matrix
- if (covMats.size() == numberCorrespondences) {
- use_cov = true;
- int l = 0;
- for (size_t i = 0; i < numberCorrespondences; ++i) {
- // invert matrix
- cov2_mat_t temp = nullspaces[i].transpose() * covMats[i] * nullspaces[i];
- temp = temp.inverse().eval();
- P.coeffRef(l, l) = temp(0, 0);
- P.coeffRef(l, l + 1) = temp(0, 1);
- P.coeffRef(l + 1, l) = temp(1, 0);
- P.coeffRef(l + 1, l + 1) = temp(1, 1);
- l += 2;
- }
- }
- //////////////////////////////////////
- // 3. fill the design matrix A
- //////////////////////////////////////
- const int rowsA = 2 * numberCorrespondences;
- int colsA = 12;
- Eigen::MatrixXd A;
- if (planar) {
- colsA = 9;
- A = Eigen::MatrixXd(rowsA, 9);
- } else
- A = Eigen::MatrixXd(rowsA, 12);
- A.setZero();
- // fill design matrix
- if (planar) {
- for (size_t i = 0; i < numberCorrespondences; ++i) {
- point_t pt3_current = points3.col(i);
- // r12
- A(2 * i, 0) = nullspaces[i](0, 0) * pt3_current[1];
- A(2 * i + 1, 0) = nullspaces[i](0, 1) * pt3_current[1];
- // r13
- A(2 * i, 1) = nullspaces[i](0, 0) * pt3_current[2];
- A(2 * i + 1, 1) = nullspaces[i](0, 1) * pt3_current[2];
- // r22
- A(2 * i, 2) = nullspaces[i](1, 0) * pt3_current[1];
- A(2 * i + 1, 2) = nullspaces[i](1, 1) * pt3_current[1];
- // r23
- A(2 * i, 3) = nullspaces[i](1, 0) * pt3_current[2];
- A(2 * i + 1, 3) = nullspaces[i](1, 1) * pt3_current[2];
- // r32
- A(2 * i, 4) = nullspaces[i](2, 0) * pt3_current[1];
- A(2 * i + 1, 4) = nullspaces[i](2, 1) * pt3_current[1];
- // r33
- A(2 * i, 5) = nullspaces[i](2, 0) * pt3_current[2];
- A(2 * i + 1, 5) = nullspaces[i](2, 1) * pt3_current[2];
- // t1
- A(2 * i, 6) = nullspaces[i](0, 0);
- A(2 * i + 1, 6) = nullspaces[i](0, 1);
- // t2
- A(2 * i, 7) = nullspaces[i](1, 0);
- A(2 * i + 1, 7) = nullspaces[i](1, 1);
- // t3
- A(2 * i, 8) = nullspaces[i](2, 0);
- A(2 * i + 1, 8) = nullspaces[i](2, 1);
- }
- } else {
- for (size_t i = 0; i < numberCorrespondences; ++i) {
- point_t pt3_current = points3.col(i);
- // r11
- A(2 * i, 0) = nullspaces[i](0, 0) * pt3_current[0];
- A(2 * i + 1, 0) = nullspaces[i](0, 1) * pt3_current[0];
- // r12
- A(2 * i, 1) = nullspaces[i](0, 0) * pt3_current[1];
- A(2 * i + 1, 1) = nullspaces[i](0, 1) * pt3_current[1];
- // r13
- A(2 * i, 2) = nullspaces[i](0, 0) * pt3_current[2];
- A(2 * i + 1, 2) = nullspaces[i](0, 1) * pt3_current[2];
- // r21
- A(2 * i, 3) = nullspaces[i](1, 0) * pt3_current[0];
- A(2 * i + 1, 3) = nullspaces[i](1, 1) * pt3_current[0];
- // r22
- A(2 * i, 4) = nullspaces[i](1, 0) * pt3_current[1];
- A(2 * i + 1, 4) = nullspaces[i](1, 1) * pt3_current[1];
- // r23
- A(2 * i, 5) = nullspaces[i](1, 0) * pt3_current[2];
- A(2 * i + 1, 5) = nullspaces[i](1, 1) * pt3_current[2];
- // r31
- A(2 * i, 6) = nullspaces[i](2, 0) * pt3_current[0];
- A(2 * i + 1, 6) = nullspaces[i](2, 1) * pt3_current[0];
- // r32
- A(2 * i, 7) = nullspaces[i](2, 0) * pt3_current[1];
- A(2 * i + 1, 7) = nullspaces[i](2, 1) * pt3_current[1];
- // r33
- A(2 * i, 8) = nullspaces[i](2, 0) * pt3_current[2];
- A(2 * i + 1, 8) = nullspaces[i](2, 1) * pt3_current[2];
- // t1
- A(2 * i, 9) = nullspaces[i](0, 0);
- A(2 * i + 1, 9) = nullspaces[i](0, 1);
- // t2
- A(2 * i, 10) = nullspaces[i](1, 0);
- A(2 * i + 1, 10) = nullspaces[i](1, 1);
- // t3
- A(2 * i, 11) = nullspaces[i](2, 0);
- A(2 * i + 1, 11) = nullspaces[i](2, 1);
- }
- }
- //////////////////////////////////////
- // 4. solve least squares
- //////////////////////////////////////
- Eigen::MatrixXd AtPA;
- if (use_cov)
- AtPA = A.transpose() * P * A; // setting up the full normal equations seems to be unstable
- else
- AtPA = A.transpose() * A;
- Eigen::JacobiSVD<Eigen::MatrixXd> svd_A(AtPA, Eigen::ComputeFullV);
- Eigen::MatrixXd result1 = svd_A.matrixV().col(colsA - 1);
- ////////////////////////////////
- // now we treat the results differently,
- // depending on the scene (planar or not)
- ////////////////////////////////
- rotation_t Rout;
- translation_t tout;
- if (planar) // planar case
- {
- rotation_t tmp;
- // until now, we only estimated
- // row one and two of the transposed rotation matrix
- tmp << 0.0, result1(0, 0), result1(1, 0),
- 0.0, result1(2, 0), result1(3, 0),
- 0.0, result1(4, 0), result1(5, 0);
- // row 3
- tmp.col(0) = tmp.col(1).cross(tmp.col(2));
- tmp.transposeInPlace();
- double scale = 1.0 / std::sqrt(std::abs(tmp.col(1).norm() * tmp.col(2).norm()));
- // find best rotation matrix in frobenius sense
- Eigen::JacobiSVD<Eigen::MatrixXd> svd_R_frob(tmp, Eigen::ComputeFullU | Eigen::ComputeFullV);
- rotation_t Rout1 = svd_R_frob.matrixU() * svd_R_frob.matrixV().transpose();
- // test if we found a good rotation matrix
- if (Rout1.determinant() < 0)
- Rout1 *= -1.0;
- // rotate this matrix back using the eigen frame
- Rout1 = eigenRot.transpose() * Rout1;
- translation_t t = scale * translation_t(result1(6, 0), result1(7, 0), result1(8, 0));
- Rout1.transposeInPlace();
- Rout1 *= -1;
- if (Rout1.determinant() < 0.0)
- Rout1.col(2) *= -1;
- // now we have to find the best out of 4 combinations
- rotation_t R1, R2;
- R1.col(0) = Rout1.col(0);
- R1.col(1) = Rout1.col(1);
- R1.col(2) = Rout1.col(2);
- R2.col(0) = -Rout1.col(0);
- R2.col(1) = -Rout1.col(1);
- R2.col(2) = Rout1.col(2);
- vector<transformation_t, Eigen::aligned_allocator<transformation_t>> Ts(4);
- Ts[0].block<3, 3>(0, 0) = R1;
- Ts[0].block<3, 1>(0, 3) = t;
- Ts[1].block<3, 3>(0, 0) = R1;
- Ts[1].block<3, 1>(0, 3) = -t;
- Ts[2].block<3, 3>(0, 0) = R2;
- Ts[2].block<3, 1>(0, 3) = t;
- Ts[3].block<3, 3>(0, 0) = R2;
- Ts[3].block<3, 1>(0, 3) = -t;
- vector<double> normVal(4);
- for (int i = 0; i < 4; ++i) {
- point_t reproPt;
- double norms = 0.0;
- for (int p = 0; p < 6; ++p) {
- reproPt = Ts[i].block<3, 3>(0, 0) * points3v[p] + Ts[i].block<3, 1>(0, 3);
- reproPt = reproPt / reproPt.norm();
- norms += (1.0 - reproPt.transpose() * f[indices[p]]);
- }
- normVal[i] = norms;
- }
- std::vector<double>::iterator
- findMinRepro = std::min_element(std::begin(normVal), std::end(normVal));
- int idx = std::distance(std::begin(normVal), findMinRepro);
- Rout = Ts[idx].block<3, 3>(0, 0);
- tout = Ts[idx].block<3, 1>(0, 3);
- } else // non-planar
- {
- rotation_t tmp;
- tmp << result1(0, 0), result1(3, 0), result1(6, 0),
- result1(1, 0), result1(4, 0), result1(7, 0),
- result1(2, 0), result1(5, 0), result1(8, 0);
- // get the scale
- double scale = 1.0 /
- std::pow(std::abs(tmp.col(0).norm() * tmp.col(1).norm() * tmp.col(2).norm()), 1.0 / 3.0);
- //double scale = 1.0 / std::sqrt(std::abs(tmp.col(0).norm() * tmp.col(1).norm()));
- // find best rotation matrix in frobenius sense
- Eigen::JacobiSVD<Eigen::MatrixXd> svd_R_frob(tmp, Eigen::ComputeFullU | Eigen::ComputeFullV);
- Rout = svd_R_frob.matrixU() * svd_R_frob.matrixV().transpose();
- // test if we found a good rotation matrix
- if (Rout.determinant() < 0)
- Rout *= -1.0;
- // scale translation
- tout = Rout * (scale * translation_t(result1(9, 0), result1(10, 0), result1(11, 0)));
- // find correct direction in terms of reprojection error, just take the first 6 correspondences
- vector<double> error(2);
- vector<Eigen::Matrix4d, Eigen::aligned_allocator<Eigen::Matrix4d>> Ts(2);
- for (int s = 0; s < 2; ++s) {
- error[s] = 0.0;
- Ts[s] = Eigen::Matrix4d::Identity();
- Ts[s].block<3, 3>(0, 0) = Rout;
- if (s == 0)
- Ts[s].block<3, 1>(0, 3) = tout;
- else
- Ts[s].block<3, 1>(0, 3) = -tout;
- Ts[s] = Ts[s].inverse().eval();
- for (int p = 0; p < 6; ++p) {
- bearingVector_t v = Ts[s].block<3, 3>(0, 0) * points3v[p] + Ts[s].block<3, 1>(0, 3);
- v = v / v.norm();
- error[s] += (1.0 - v.transpose() * f[indices[p]]);
- }
- }
- if (error[0] < error[1])
- tout = Ts[0].block<3, 1>(0, 3);
- else
- tout = Ts[1].block<3, 1>(0, 3);
- Rout = Ts[0].block<3, 3>(0, 0);
- }
- //////////////////////////////////////
- // 5. gauss newton
- //////////////////////////////////////
- rodrigues_t omega = rot2rodrigues(Rout);
- Eigen::VectorXd minx(6);
- minx[0] = omega[0];
- minx[1] = omega[1];
- minx[2] = omega[2];
- minx[3] = tout[0];
- minx[4] = tout[1];
- minx[5] = tout[2];
- mlpnp_gn(minx, points3v, nullspaces, P, use_cov);
- Rout = rodrigues2rot(rodrigues_t(minx[0], minx[1], minx[2]));
- tout = translation_t(minx[3], minx[4], minx[5]);
- // result inverse as opengv uses this convention
- result.block<3, 3>(0, 0) = Rout;
- result.block<3, 1>(0, 3) = tout;
- }
- Eigen::Matrix3d MLPnPsolver::rodrigues2rot(const Eigen::Vector3d &omega) {
- rotation_t R = Eigen::Matrix3d::Identity();
- Eigen::Matrix3d skewW;
- skewW << 0.0, -omega(2), omega(1),
- omega(2), 0.0, -omega(0),
- -omega(1), omega(0), 0.0;
- double omega_norm = omega.norm();
- if (omega_norm > std::numeric_limits<double>::epsilon())
- R = R + sin(omega_norm) / omega_norm * skewW
- + (1 - cos(omega_norm)) / (omega_norm * omega_norm) * (skewW * skewW);
- return R;
- }
- Eigen::Vector3d MLPnPsolver::rot2rodrigues(const Eigen::Matrix3d &R) {
- rodrigues_t omega;
- omega << 0.0, 0.0, 0.0;
- double trace = R.trace() - 1.0;
- double wnorm = acos(trace / 2.0);
- if (wnorm > std::numeric_limits<double>::epsilon())
- {
- omega[0] = (R(2, 1) - R(1, 2));
- omega[1] = (R(0, 2) - R(2, 0));
- omega[2] = (R(1, 0) - R(0, 1));
- double sc = wnorm / (2.0*sin(wnorm));
- omega *= sc;
- }
- return omega;
- }
- void MLPnPsolver::mlpnp_gn(Eigen::VectorXd &x, const points_t &pts, const std::vector<Eigen::MatrixXd> &nullspaces,
- const Eigen::SparseMatrix<double> Kll, bool use_cov) {
- const int numObservations = pts.size();
- const int numUnknowns = 6;
- // check redundancy
- assert((2 * numObservations - numUnknowns) > 0);
- // =============
- // set all matrices up
- // =============
- Eigen::VectorXd r(2 * numObservations);
- Eigen::VectorXd rd(2 * numObservations);
- Eigen::MatrixXd Jac(2 * numObservations, numUnknowns);
- Eigen::VectorXd g(numUnknowns, 1);
- Eigen::VectorXd dx(numUnknowns, 1); // result vector
- Jac.setZero();
- r.setZero();
- dx.setZero();
- g.setZero();
- int it_cnt = 0;
- bool stop = false;
- const int maxIt = 5;
- double epsP = 1e-5;
- Eigen::MatrixXd JacTSKll;
- Eigen::MatrixXd A;
- // solve simple gradient descent
- while (it_cnt < maxIt && !stop) {
- mlpnp_residuals_and_jacs(x, pts,
- nullspaces,
- r, Jac, true);
- if (use_cov)
- JacTSKll = Jac.transpose() * Kll;
- else
- JacTSKll = Jac.transpose();
- A = JacTSKll * Jac;
- // get system matrix
- g = JacTSKll * r;
- // solve
- Eigen::LDLT<Eigen::MatrixXd> chol(A);
- dx = chol.solve(g);
- // this is to prevent the solution from falling into a wrong minimum
- // if the linear estimate is spurious
- if (dx.array().abs().maxCoeff() > 5.0 || dx.array().abs().minCoeff() > 1.0)
- break;
- // observation update
- Eigen::MatrixXd dl = Jac * dx;
- if (dl.array().abs().maxCoeff() < epsP) {
- stop = true;
- x = x - dx;
- break;
- } else
- x = x - dx;
- ++it_cnt;
- }//while
- // result
- }
- void MLPnPsolver::mlpnp_residuals_and_jacs(const Eigen::VectorXd &x, const points_t &pts,
- const std::vector<Eigen::MatrixXd> &nullspaces, Eigen::VectorXd &r,
- Eigen::MatrixXd &fjac, bool getJacs) {
- rodrigues_t w(x[0], x[1], x[2]);
- translation_t T(x[3], x[4], x[5]);
- rotation_t R = rodrigues2rot(w);
- int ii = 0;
- Eigen::MatrixXd jacs(2, 6);
- for (int i = 0; i < pts.size(); ++i)
- {
- Eigen::Vector3d ptCam = R*pts[i] + T;
- ptCam /= ptCam.norm();
- r[ii] = nullspaces[i].col(0).transpose()*ptCam;
- r[ii + 1] = nullspaces[i].col(1).transpose()*ptCam;
- if (getJacs)
- {
- // jacs
- mlpnpJacs(pts[i],
- nullspaces[i].col(0), nullspaces[i].col(1),
- w, T,
- jacs);
- // r
- fjac(ii, 0) = jacs(0, 0);
- fjac(ii, 1) = jacs(0, 1);
- fjac(ii, 2) = jacs(0, 2);
- fjac(ii, 3) = jacs(0, 3);
- fjac(ii, 4) = jacs(0, 4);
- fjac(ii, 5) = jacs(0, 5);
- // s
- fjac(ii + 1, 0) = jacs(1, 0);
- fjac(ii + 1, 1) = jacs(1, 1);
- fjac(ii + 1, 2) = jacs(1, 2);
- fjac(ii + 1, 3) = jacs(1, 3);
- fjac(ii + 1, 4) = jacs(1, 4);
- fjac(ii + 1, 5) = jacs(1, 5);
- }
- ii += 2;
- }
- }
- void MLPnPsolver::mlpnpJacs(const point_t& pt, const Eigen::Vector3d& nullspace_r,
- const Eigen::Vector3d& nullspace_s, const rodrigues_t& w,
- const translation_t& t, Eigen::MatrixXd& jacs){
- double r1 = nullspace_r[0];
- double r2 = nullspace_r[1];
- double r3 = nullspace_r[2];
- double s1 = nullspace_s[0];
- double s2 = nullspace_s[1];
- double s3 = nullspace_s[2];
- double X1 = pt[0];
- double Y1 = pt[1];
- double Z1 = pt[2];
- double w1 = w[0];
- double w2 = w[1];
- double w3 = w[2];
- double t1 = t[0];
- double t2 = t[1];
- double t3 = t[2];
- double t5 = w1*w1;
- double t6 = w2*w2;
- double t7 = w3*w3;
- double t8 = t5+t6+t7;
- double t9 = sqrt(t8);
- double t10 = sin(t9);
- double t11 = 1.0/sqrt(t8);
- double t12 = cos(t9);
- double t13 = t12-1.0;
- double t14 = 1.0/t8;
- double t16 = t10*t11*w3;
- double t17 = t13*t14*w1*w2;
- double t19 = t10*t11*w2;
- double t20 = t13*t14*w1*w3;
- double t24 = t6+t7;
- double t27 = t16+t17;
- double t28 = Y1*t27;
- double t29 = t19-t20;
- double t30 = Z1*t29;
- double t31 = t13*t14*t24;
- double t32 = t31+1.0;
- double t33 = X1*t32;
- double t15 = t1-t28+t30+t33;
- double t21 = t10*t11*w1;
- double t22 = t13*t14*w2*w3;
- double t45 = t5+t7;
- double t53 = t16-t17;
- double t54 = X1*t53;
- double t55 = t21+t22;
- double t56 = Z1*t55;
- double t57 = t13*t14*t45;
- double t58 = t57+1.0;
- double t59 = Y1*t58;
- double t18 = t2+t54-t56+t59;
- double t34 = t5+t6;
- double t38 = t19+t20;
- double t39 = X1*t38;
- double t40 = t21-t22;
- double t41 = Y1*t40;
- double t42 = t13*t14*t34;
- double t43 = t42+1.0;
- double t44 = Z1*t43;
- double t23 = t3-t39+t41+t44;
- double t25 = 1.0/pow(t8,3.0/2.0);
- double t26 = 1.0/(t8*t8);
- double t35 = t12*t14*w1*w2;
- double t36 = t5*t10*t25*w3;
- double t37 = t5*t13*t26*w3*2.0;
- double t46 = t10*t25*w1*w3;
- double t47 = t5*t10*t25*w2;
- double t48 = t5*t13*t26*w2*2.0;
- double t49 = t10*t11;
- double t50 = t5*t12*t14;
- double t51 = t13*t26*w1*w2*w3*2.0;
- double t52 = t10*t25*w1*w2*w3;
- double t60 = t15*t15;
- double t61 = t18*t18;
- double t62 = t23*t23;
- double t63 = t60+t61+t62;
- double t64 = t5*t10*t25;
- double t65 = 1.0/sqrt(t63);
- double t66 = Y1*r2*t6;
- double t67 = Z1*r3*t7;
- double t68 = r1*t1*t5;
- double t69 = r1*t1*t6;
- double t70 = r1*t1*t7;
- double t71 = r2*t2*t5;
- double t72 = r2*t2*t6;
- double t73 = r2*t2*t7;
- double t74 = r3*t3*t5;
- double t75 = r3*t3*t6;
- double t76 = r3*t3*t7;
- double t77 = X1*r1*t5;
- double t78 = X1*r2*w1*w2;
- double t79 = X1*r3*w1*w3;
- double t80 = Y1*r1*w1*w2;
- double t81 = Y1*r3*w2*w3;
- double t82 = Z1*r1*w1*w3;
- double t83 = Z1*r2*w2*w3;
- double t84 = X1*r1*t6*t12;
- double t85 = X1*r1*t7*t12;
- double t86 = Y1*r2*t5*t12;
- double t87 = Y1*r2*t7*t12;
- double t88 = Z1*r3*t5*t12;
- double t89 = Z1*r3*t6*t12;
- double t90 = X1*r2*t9*t10*w3;
- double t91 = Y1*r3*t9*t10*w1;
- double t92 = Z1*r1*t9*t10*w2;
- double t102 = X1*r3*t9*t10*w2;
- double t103 = Y1*r1*t9*t10*w3;
- double t104 = Z1*r2*t9*t10*w1;
- double t105 = X1*r2*t12*w1*w2;
- double t106 = X1*r3*t12*w1*w3;
- double t107 = Y1*r1*t12*w1*w2;
- double t108 = Y1*r3*t12*w2*w3;
- double t109 = Z1*r1*t12*w1*w3;
- double t110 = Z1*r2*t12*w2*w3;
- double t93 = t66+t67+t68+t69+t70+t71+t72+t73+t74+t75+t76+t77+t78+t79+t80+t81+t82+t83+t84+t85+t86+t87+t88+t89+t90+t91+t92-t102-t103-t104-t105-t106-t107-t108-t109-t110;
- double t94 = t10*t25*w1*w2;
- double t95 = t6*t10*t25*w3;
- double t96 = t6*t13*t26*w3*2.0;
- double t97 = t12*t14*w2*w3;
- double t98 = t6*t10*t25*w1;
- double t99 = t6*t13*t26*w1*2.0;
- double t100 = t6*t10*t25;
- double t101 = 1.0/pow(t63,3.0/2.0);
- double t111 = t6*t12*t14;
- double t112 = t10*t25*w2*w3;
- double t113 = t12*t14*w1*w3;
- double t114 = t7*t10*t25*w2;
- double t115 = t7*t13*t26*w2*2.0;
- double t116 = t7*t10*t25*w1;
- double t117 = t7*t13*t26*w1*2.0;
- double t118 = t7*t12*t14;
- double t119 = t13*t24*t26*w1*2.0;
- double t120 = t10*t24*t25*w1;
- double t121 = t119+t120;
- double t122 = t13*t26*t34*w1*2.0;
- double t123 = t10*t25*t34*w1;
- double t131 = t13*t14*w1*2.0;
- double t124 = t122+t123-t131;
- double t139 = t13*t14*w3;
- double t125 = -t35+t36+t37+t94-t139;
- double t126 = X1*t125;
- double t127 = t49+t50+t51+t52-t64;
- double t128 = Y1*t127;
- double t129 = t126+t128-Z1*t124;
- double t130 = t23*t129*2.0;
- double t132 = t13*t26*t45*w1*2.0;
- double t133 = t10*t25*t45*w1;
- double t138 = t13*t14*w2;
- double t134 = -t46+t47+t48+t113-t138;
- double t135 = X1*t134;
- double t136 = -t49-t50+t51+t52+t64;
- double t137 = Z1*t136;
- double t140 = X1*s1*t5;
- double t141 = Y1*s2*t6;
- double t142 = Z1*s3*t7;
- double t143 = s1*t1*t5;
- double t144 = s1*t1*t6;
- double t145 = s1*t1*t7;
- double t146 = s2*t2*t5;
- double t147 = s2*t2*t6;
- double t148 = s2*t2*t7;
- double t149 = s3*t3*t5;
- double t150 = s3*t3*t6;
- double t151 = s3*t3*t7;
- double t152 = X1*s2*w1*w2;
- double t153 = X1*s3*w1*w3;
- double t154 = Y1*s1*w1*w2;
- double t155 = Y1*s3*w2*w3;
- double t156 = Z1*s1*w1*w3;
- double t157 = Z1*s2*w2*w3;
- double t158 = X1*s1*t6*t12;
- double t159 = X1*s1*t7*t12;
- double t160 = Y1*s2*t5*t12;
- double t161 = Y1*s2*t7*t12;
- double t162 = Z1*s3*t5*t12;
- double t163 = Z1*s3*t6*t12;
- double t164 = X1*s2*t9*t10*w3;
- double t165 = Y1*s3*t9*t10*w1;
- double t166 = Z1*s1*t9*t10*w2;
- double t183 = X1*s3*t9*t10*w2;
- double t184 = Y1*s1*t9*t10*w3;
- double t185 = Z1*s2*t9*t10*w1;
- double t186 = X1*s2*t12*w1*w2;
- double t187 = X1*s3*t12*w1*w3;
- double t188 = Y1*s1*t12*w1*w2;
- double t189 = Y1*s3*t12*w2*w3;
- double t190 = Z1*s1*t12*w1*w3;
- double t191 = Z1*s2*t12*w2*w3;
- double t167 = t140+t141+t142+t143+t144+t145+t146+t147+t148+t149+t150+t151+t152+t153+t154+t155+t156+t157+t158+t159+t160+t161+t162+t163+t164+t165+t166-t183-t184-t185-t186-t187-t188-t189-t190-t191;
- double t168 = t13*t26*t45*w2*2.0;
- double t169 = t10*t25*t45*w2;
- double t170 = t168+t169;
- double t171 = t13*t26*t34*w2*2.0;
- double t172 = t10*t25*t34*w2;
- double t176 = t13*t14*w2*2.0;
- double t173 = t171+t172-t176;
- double t174 = -t49+t51+t52+t100-t111;
- double t175 = X1*t174;
- double t177 = t13*t24*t26*w2*2.0;
- double t178 = t10*t24*t25*w2;
- double t192 = t13*t14*w1;
- double t179 = -t97+t98+t99+t112-t192;
- double t180 = Y1*t179;
- double t181 = t49+t51+t52-t100+t111;
- double t182 = Z1*t181;
- double t193 = t13*t26*t34*w3*2.0;
- double t194 = t10*t25*t34*w3;
- double t195 = t193+t194;
- double t196 = t13*t26*t45*w3*2.0;
- double t197 = t10*t25*t45*w3;
- double t200 = t13*t14*w3*2.0;
- double t198 = t196+t197-t200;
- double t199 = t7*t10*t25;
- double t201 = t13*t24*t26*w3*2.0;
- double t202 = t10*t24*t25*w3;
- double t203 = -t49+t51+t52-t118+t199;
- double t204 = Y1*t203;
- double t205 = t1*2.0;
- double t206 = Z1*t29*2.0;
- double t207 = X1*t32*2.0;
- double t208 = t205+t206+t207-Y1*t27*2.0;
- double t209 = t2*2.0;
- double t210 = X1*t53*2.0;
- double t211 = Y1*t58*2.0;
- double t212 = t209+t210+t211-Z1*t55*2.0;
- double t213 = t3*2.0;
- double t214 = Y1*t40*2.0;
- double t215 = Z1*t43*2.0;
- double t216 = t213+t214+t215-X1*t38*2.0;
- jacs(0, 0) = t14*t65*(X1*r1*w1*2.0+X1*r2*w2+X1*r3*w3+Y1*r1*w2+Z1*r1*w3+r1*t1*w1*2.0+r2*t2*w1*2.0+r3*t3*w1*2.0+Y1*r3*t5*t12+Y1*r3*t9*t10-Z1*r2*t5*t12-Z1*r2*t9*t10-X1*r2*t12*w2-X1*r3*t12*w3-Y1*r1*t12*w2+Y1*r2*t12*w1*2.0-Z1*r1*t12*w3+Z1*r3*t12*w1*2.0+Y1*r3*t5*t10*t11-Z1*r2*t5*t10*t11+X1*r2*t12*w1*w3-X1*r3*t12*w1*w2-Y1*r1*t12*w1*w3+Z1*r1*t12*w1*w2-Y1*r1*t10*t11*w1*w3+Z1*r1*t10*t11*w1*w2-X1*r1*t6*t10*t11*w1-X1*r1*t7*t10*t11*w1+X1*r2*t5*t10*t11*w2+X1*r3*t5*t10*t11*w3+Y1*r1*t5*t10*t11*w2-Y1*r2*t5*t10*t11*w1-Y1*r2*t7*t10*t11*w1+Z1*r1*t5*t10*t11*w3-Z1*r3*t5*t10*t11*w1-Z1*r3*t6*t10*t11*w1+X1*r2*t10*t11*w1*w3-X1*r3*t10*t11*w1*w2+Y1*r3*t10*t11*w1*w2*w3+Z1*r2*t10*t11*w1*w2*w3)-t26*t65*t93*w1*2.0-t14*t93*t101*(t130+t15*(-X1*t121+Y1*(t46+t47+t48-t13*t14*w2-t12*t14*w1*w3)+Z1*(t35+t36+t37-t13*t14*w3-t10*t25*w1*w2))*2.0+t18*(t135+t137-Y1*(t132+t133-t13*t14*w1*2.0))*2.0)*(1.0/2.0);
- jacs(0, 1) = t14*t65*(X1*r2*w1+Y1*r1*w1+Y1*r2*w2*2.0+Y1*r3*w3+Z1*r2*w3+r1*t1*w2*2.0+r2*t2*w2*2.0+r3*t3*w2*2.0-X1*r3*t6*t12-X1*r3*t9*t10+Z1*r1*t6*t12+Z1*r1*t9*t10+X1*r1*t12*w2*2.0-X1*r2*t12*w1-Y1*r1*t12*w1-Y1*r3*t12*w3-Z1*r2*t12*w3+Z1*r3*t12*w2*2.0-X1*r3*t6*t10*t11+Z1*r1*t6*t10*t11+X1*r2*t12*w2*w3-Y1*r1*t12*w2*w3+Y1*r3*t12*w1*w2-Z1*r2*t12*w1*w2-Y1*r1*t10*t11*w2*w3+Y1*r3*t10*t11*w1*w2-Z1*r2*t10*t11*w1*w2-X1*r1*t6*t10*t11*w2+X1*r2*t6*t10*t11*w1-X1*r1*t7*t10*t11*w2+Y1*r1*t6*t10*t11*w1-Y1*r2*t5*t10*t11*w2-Y1*r2*t7*t10*t11*w2+Y1*r3*t6*t10*t11*w3-Z1*r3*t5*t10*t11*w2+Z1*r2*t6*t10*t11*w3-Z1*r3*t6*t10*t11*w2+X1*r2*t10*t11*w2*w3+X1*r3*t10*t11*w1*w2*w3+Z1*r1*t10*t11*w1*w2*w3)-t26*t65*t93*w2*2.0-t14*t93*t101*(t18*(Z1*(-t35+t94+t95+t96-t13*t14*w3)-Y1*t170+X1*(t97+t98+t99-t13*t14*w1-t10*t25*w2*w3))*2.0+t15*(t180+t182-X1*(t177+t178-t13*t14*w2*2.0))*2.0+t23*(t175+Y1*(t35-t94+t95+t96-t13*t14*w3)-Z1*t173)*2.0)*(1.0/2.0);
- jacs(0, 2) = t14*t65*(X1*r3*w1+Y1*r3*w2+Z1*r1*w1+Z1*r2*w2+Z1*r3*w3*2.0+r1*t1*w3*2.0+r2*t2*w3*2.0+r3*t3*w3*2.0+X1*r2*t7*t12+X1*r2*t9*t10-Y1*r1*t7*t12-Y1*r1*t9*t10+X1*r1*t12*w3*2.0-X1*r3*t12*w1+Y1*r2*t12*w3*2.0-Y1*r3*t12*w2-Z1*r1*t12*w1-Z1*r2*t12*w2+X1*r2*t7*t10*t11-Y1*r1*t7*t10*t11-X1*r3*t12*w2*w3+Y1*r3*t12*w1*w3+Z1*r1*t12*w2*w3-Z1*r2*t12*w1*w3+Y1*r3*t10*t11*w1*w3+Z1*r1*t10*t11*w2*w3-Z1*r2*t10*t11*w1*w3-X1*r1*t6*t10*t11*w3-X1*r1*t7*t10*t11*w3+X1*r3*t7*t10*t11*w1-Y1*r2*t5*t10*t11*w3-Y1*r2*t7*t10*t11*w3+Y1*r3*t7*t10*t11*w2+Z1*r1*t7*t10*t11*w1+Z1*r2*t7*t10*t11*w2-Z1*r3*t5*t10*t11*w3-Z1*r3*t6*t10*t11*w3-X1*r3*t10*t11*w2*w3+X1*r2*t10*t11*w1*w2*w3+Y1*r1*t10*t11*w1*w2*w3)-t26*t65*t93*w3*2.0-t14*t93*t101*(t18*(Z1*(t46-t113+t114+t115-t13*t14*w2)-Y1*t198+X1*(t49+t51+t52+t118-t7*t10*t25))*2.0+t23*(X1*(-t97+t112+t116+t117-t13*t14*w1)+Y1*(-t46+t113+t114+t115-t13*t14*w2)-Z1*t195)*2.0+t15*(t204+Z1*(t97-t112+t116+t117-t13*t14*w1)-X1*(t201+t202-t13*t14*w3*2.0))*2.0)*(1.0/2.0);
- jacs(0, 3) = r1*t65-t14*t93*t101*t208*(1.0/2.0);
- jacs(0, 4) = r2*t65-t14*t93*t101*t212*(1.0/2.0);
- jacs(0, 5) = r3*t65-t14*t93*t101*t216*(1.0/2.0);
- jacs(1, 0) = t14*t65*(X1*s1*w1*2.0+X1*s2*w2+X1*s3*w3+Y1*s1*w2+Z1*s1*w3+s1*t1*w1*2.0+s2*t2*w1*2.0+s3*t3*w1*2.0+Y1*s3*t5*t12+Y1*s3*t9*t10-Z1*s2*t5*t12-Z1*s2*t9*t10-X1*s2*t12*w2-X1*s3*t12*w3-Y1*s1*t12*w2+Y1*s2*t12*w1*2.0-Z1*s1*t12*w3+Z1*s3*t12*w1*2.0+Y1*s3*t5*t10*t11-Z1*s2*t5*t10*t11+X1*s2*t12*w1*w3-X1*s3*t12*w1*w2-Y1*s1*t12*w1*w3+Z1*s1*t12*w1*w2+X1*s2*t10*t11*w1*w3-X1*s3*t10*t11*w1*w2-Y1*s1*t10*t11*w1*w3+Z1*s1*t10*t11*w1*w2-X1*s1*t6*t10*t11*w1-X1*s1*t7*t10*t11*w1+X1*s2*t5*t10*t11*w2+X1*s3*t5*t10*t11*w3+Y1*s1*t5*t10*t11*w2-Y1*s2*t5*t10*t11*w1-Y1*s2*t7*t10*t11*w1+Z1*s1*t5*t10*t11*w3-Z1*s3*t5*t10*t11*w1-Z1*s3*t6*t10*t11*w1+Y1*s3*t10*t11*w1*w2*w3+Z1*s2*t10*t11*w1*w2*w3)-t14*t101*t167*(t130+t15*(Y1*(t46+t47+t48-t113-t138)+Z1*(t35+t36+t37-t94-t139)-X1*t121)*2.0+t18*(t135+t137-Y1*(-t131+t132+t133))*2.0)*(1.0/2.0)-t26*t65*t167*w1*2.0;
- jacs(1, 1) = t14*t65*(X1*s2*w1+Y1*s1*w1+Y1*s2*w2*2.0+Y1*s3*w3+Z1*s2*w3+s1*t1*w2*2.0+s2*t2*w2*2.0+s3*t3*w2*2.0-X1*s3*t6*t12-X1*s3*t9*t10+Z1*s1*t6*t12+Z1*s1*t9*t10+X1*s1*t12*w2*2.0-X1*s2*t12*w1-Y1*s1*t12*w1-Y1*s3*t12*w3-Z1*s2*t12*w3+Z1*s3*t12*w2*2.0-X1*s3*t6*t10*t11+Z1*s1*t6*t10*t11+X1*s2*t12*w2*w3-Y1*s1*t12*w2*w3+Y1*s3*t12*w1*w2-Z1*s2*t12*w1*w2+X1*s2*t10*t11*w2*w3-Y1*s1*t10*t11*w2*w3+Y1*s3*t10*t11*w1*w2-Z1*s2*t10*t11*w1*w2-X1*s1*t6*t10*t11*w2+X1*s2*t6*t10*t11*w1-X1*s1*t7*t10*t11*w2+Y1*s1*t6*t10*t11*w1-Y1*s2*t5*t10*t11*w2-Y1*s2*t7*t10*t11*w2+Y1*s3*t6*t10*t11*w3-Z1*s3*t5*t10*t11*w2+Z1*s2*t6*t10*t11*w3-Z1*s3*t6*t10*t11*w2+X1*s3*t10*t11*w1*w2*w3+Z1*s1*t10*t11*w1*w2*w3)-t26*t65*t167*w2*2.0-t14*t101*t167*(t18*(X1*(t97+t98+t99-t112-t192)+Z1*(-t35+t94+t95+t96-t139)-Y1*t170)*2.0+t15*(t180+t182-X1*(-t176+t177+t178))*2.0+t23*(t175+Y1*(t35-t94+t95+t96-t139)-Z1*t173)*2.0)*(1.0/2.0);
- jacs(1, 2) = t14*t65*(X1*s3*w1+Y1*s3*w2+Z1*s1*w1+Z1*s2*w2+Z1*s3*w3*2.0+s1*t1*w3*2.0+s2*t2*w3*2.0+s3*t3*w3*2.0+X1*s2*t7*t12+X1*s2*t9*t10-Y1*s1*t7*t12-Y1*s1*t9*t10+X1*s1*t12*w3*2.0-X1*s3*t12*w1+Y1*s2*t12*w3*2.0-Y1*s3*t12*w2-Z1*s1*t12*w1-Z1*s2*t12*w2+X1*s2*t7*t10*t11-Y1*s1*t7*t10*t11-X1*s3*t12*w2*w3+Y1*s3*t12*w1*w3+Z1*s1*t12*w2*w3-Z1*s2*t12*w1*w3-X1*s3*t10*t11*w2*w3+Y1*s3*t10*t11*w1*w3+Z1*s1*t10*t11*w2*w3-Z1*s2*t10*t11*w1*w3-X1*s1*t6*t10*t11*w3-X1*s1*t7*t10*t11*w3+X1*s3*t7*t10*t11*w1-Y1*s2*t5*t10*t11*w3-Y1*s2*t7*t10*t11*w3+Y1*s3*t7*t10*t11*w2+Z1*s1*t7*t10*t11*w1+Z1*s2*t7*t10*t11*w2-Z1*s3*t5*t10*t11*w3-Z1*s3*t6*t10*t11*w3+X1*s2*t10*t11*w1*w2*w3+Y1*s1*t10*t11*w1*w2*w3)-t26*t65*t167*w3*2.0-t14*t101*t167*(t18*(Z1*(t46-t113+t114+t115-t138)-Y1*t198+X1*(t49+t51+t52+t118-t199))*2.0+t23*(X1*(-t97+t112+t116+t117-t192)+Y1*(-t46+t113+t114+t115-t138)-Z1*t195)*2.0+t15*(t204+Z1*(t97-t112+t116+t117-t192)-X1*(-t200+t201+t202))*2.0)*(1.0/2.0);
- jacs(1, 3) = s1*t65-t14*t101*t167*t208*(1.0/2.0);
- jacs(1, 4) = s2*t65-t14*t101*t167*t212*(1.0/2.0);
- jacs(1, 5) = s3*t65-t14*t101*t167*t216*(1.0/2.0);
- }
- }//End namespace ORB_SLAM2
|