12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019 |
- /**
- * This file is part of ORB-SLAM3
- *
- * Copyright (C) 2017-2020 Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
- * Copyright (C) 2014-2016 Raúl Mur-Artal, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
- *
- * ORB-SLAM3 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
- * License as published by the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * ORB-SLAM3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
- * the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along with ORB-SLAM3.
- * If not, see <http://www.gnu.org/licenses/>.
- */
- /**
- * Copyright (c) 2009, V. Lepetit, EPFL
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- *
- * 1. Redistributions of source code must retain the above copyright notice, this
- * list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
- * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- * The views and conclusions contained in the software and documentation are those
- * of the authors and should not be interpreted as representing official policies,
- * either expressed or implied, of the FreeBSD Project
- */
- #include <iostream>
- #include "PnPsolver.h"
- #include <vector>
- #include <cmath>
- #include <opencv2/core/core.hpp>
- #include "Thirdparty/DBoW2/DUtils/Random.h"
- #include <algorithm>
- using namespace std;
- namespace ORB_SLAM3
- {
- PnPsolver::PnPsolver(const Frame &F, const vector<MapPoint*> &vpMapPointMatches):
- pws(0), us(0), alphas(0), pcs(0), maximum_number_of_correspondences(0), number_of_correspondences(0), mnInliersi(0),
- mnIterations(0), mnBestInliers(0), N(0)
- {
- mvpMapPointMatches = vpMapPointMatches;
- mvP2D.reserve(F.mvpMapPoints.size());
- mvSigma2.reserve(F.mvpMapPoints.size());
- mvP3Dw.reserve(F.mvpMapPoints.size());
- mvKeyPointIndices.reserve(F.mvpMapPoints.size());
- mvAllIndices.reserve(F.mvpMapPoints.size());
- int idx=0;
- for(size_t i=0, iend=vpMapPointMatches.size(); i<iend; i++)
- {
- MapPoint* pMP = vpMapPointMatches[i];
- if(pMP)
- {
- if(!pMP->isBad())
- {
- const cv::KeyPoint &kp = F.mvKeysUn[i];
- mvP2D.push_back(kp.pt);
- mvSigma2.push_back(F.mvLevelSigma2[kp.octave]);
- cv::Mat Pos = pMP->GetWorldPos();
- mvP3Dw.push_back(cv::Point3f(Pos.at<float>(0),Pos.at<float>(1), Pos.at<float>(2)));
- mvKeyPointIndices.push_back(i);
- mvAllIndices.push_back(idx);
- idx++;
- }
- }
- }
- // Set camera calibration parameters
- fu = F.fx;
- fv = F.fy;
- uc = F.cx;
- vc = F.cy;
- SetRansacParameters();
- }
- PnPsolver::~PnPsolver()
- {
- delete [] pws;
- delete [] us;
- delete [] alphas;
- delete [] pcs;
- }
- void PnPsolver::SetRansacParameters(double probability, int minInliers, int maxIterations, int minSet, float epsilon, float th2)
- {
- mRansacProb = probability;
- mRansacMinInliers = minInliers;
- mRansacMaxIts = maxIterations;
- mRansacEpsilon = epsilon;
- mRansacMinSet = minSet;
- N = mvP2D.size(); // number of correspondences
- mvbInliersi.resize(N);
- // Adjust Parameters according to number of correspondences
- int nMinInliers = N*mRansacEpsilon;
- if(nMinInliers<mRansacMinInliers)
- nMinInliers=mRansacMinInliers;
- if(nMinInliers<minSet)
- nMinInliers=minSet;
- mRansacMinInliers = nMinInliers;
- if(mRansacEpsilon<(float)mRansacMinInliers/N)
- mRansacEpsilon=(float)mRansacMinInliers/N;
- // Set RANSAC iterations according to probability, epsilon, and max iterations
- int nIterations;
- if(mRansacMinInliers==N)
- nIterations=1;
- else
- nIterations = ceil(log(1-mRansacProb)/log(1-pow(mRansacEpsilon,3)));
- mRansacMaxIts = max(1,min(nIterations,mRansacMaxIts));
- mvMaxError.resize(mvSigma2.size());
- for(size_t i=0; i<mvSigma2.size(); i++)
- mvMaxError[i] = mvSigma2[i]*th2;
- }
- cv::Mat PnPsolver::find(vector<bool> &vbInliers, int &nInliers)
- {
- bool bFlag;
- return iterate(mRansacMaxIts,bFlag,vbInliers,nInliers);
- }
- cv::Mat PnPsolver::iterate(int nIterations, bool &bNoMore, vector<bool> &vbInliers, int &nInliers)
- {
- bNoMore = false;
- vbInliers.clear();
- nInliers=0;
- set_maximum_number_of_correspondences(mRansacMinSet);
- if(N<mRansacMinInliers)
- {
- bNoMore = true;
- return cv::Mat();
- }
- vector<size_t> vAvailableIndices;
- int nCurrentIterations = 0;
- while(mnIterations<mRansacMaxIts || nCurrentIterations<nIterations)
- {
- nCurrentIterations++;
- mnIterations++;
- reset_correspondences();
- vAvailableIndices = mvAllIndices;
- // Get min set of points
- for(short i = 0; i < mRansacMinSet; ++i)
- {
- int randi = DUtils::Random::RandomInt(0, vAvailableIndices.size()-1);
- int idx = vAvailableIndices[randi];
- add_correspondence(mvP3Dw[idx].x,mvP3Dw[idx].y,mvP3Dw[idx].z,mvP2D[idx].x,mvP2D[idx].y);
- vAvailableIndices[randi] = vAvailableIndices.back();
- vAvailableIndices.pop_back();
- }
- // Compute camera pose
- compute_pose(mRi, mti);
- // Check inliers
- CheckInliers();
- if(mnInliersi>=mRansacMinInliers)
- {
- // If it is the best solution so far, save it
- if(mnInliersi>mnBestInliers)
- {
- mvbBestInliers = mvbInliersi;
- mnBestInliers = mnInliersi;
- cv::Mat Rcw(3,3,CV_64F,mRi);
- cv::Mat tcw(3,1,CV_64F,mti);
- Rcw.convertTo(Rcw,CV_32F);
- tcw.convertTo(tcw,CV_32F);
- mBestTcw = cv::Mat::eye(4,4,CV_32F);
- Rcw.copyTo(mBestTcw.rowRange(0,3).colRange(0,3));
- tcw.copyTo(mBestTcw.rowRange(0,3).col(3));
- }
- if(Refine())
- {
- nInliers = mnRefinedInliers;
- vbInliers = vector<bool>(mvpMapPointMatches.size(),false);
- for(int i=0; i<N; i++)
- {
- if(mvbRefinedInliers[i])
- vbInliers[mvKeyPointIndices[i]] = true;
- }
- return mRefinedTcw.clone();
- }
- }
- }
- if(mnIterations>=mRansacMaxIts)
- {
- bNoMore=true;
- if(mnBestInliers>=mRansacMinInliers)
- {
- nInliers=mnBestInliers;
- vbInliers = vector<bool>(mvpMapPointMatches.size(),false);
- for(int i=0; i<N; i++)
- {
- if(mvbBestInliers[i])
- vbInliers[mvKeyPointIndices[i]] = true;
- }
- return mBestTcw.clone();
- }
- }
- return cv::Mat();
- }
- bool PnPsolver::Refine()
- {
- vector<int> vIndices;
- vIndices.reserve(mvbBestInliers.size());
- for(size_t i=0; i<mvbBestInliers.size(); i++)
- {
- if(mvbBestInliers[i])
- {
- vIndices.push_back(i);
- }
- }
- set_maximum_number_of_correspondences(vIndices.size());
- reset_correspondences();
- for(size_t i=0; i<vIndices.size(); i++)
- {
- int idx = vIndices[i];
- add_correspondence(mvP3Dw[idx].x,mvP3Dw[idx].y,mvP3Dw[idx].z,mvP2D[idx].x,mvP2D[idx].y);
- }
- // Compute camera pose
- compute_pose(mRi, mti);
- // Check inliers
- CheckInliers();
- mnRefinedInliers =mnInliersi;
- mvbRefinedInliers = mvbInliersi;
- if(mnInliersi>mRansacMinInliers)
- {
- cv::Mat Rcw(3,3,CV_64F,mRi);
- cv::Mat tcw(3,1,CV_64F,mti);
- Rcw.convertTo(Rcw,CV_32F);
- tcw.convertTo(tcw,CV_32F);
- mRefinedTcw = cv::Mat::eye(4,4,CV_32F);
- Rcw.copyTo(mRefinedTcw.rowRange(0,3).colRange(0,3));
- tcw.copyTo(mRefinedTcw.rowRange(0,3).col(3));
- return true;
- }
- return false;
- }
- void PnPsolver::CheckInliers()
- {
- mnInliersi=0;
- for(int i=0; i<N; i++)
- {
- cv::Point3f P3Dw = mvP3Dw[i];
- cv::Point2f P2D = mvP2D[i];
- float Xc = mRi[0][0]*P3Dw.x+mRi[0][1]*P3Dw.y+mRi[0][2]*P3Dw.z+mti[0];
- float Yc = mRi[1][0]*P3Dw.x+mRi[1][1]*P3Dw.y+mRi[1][2]*P3Dw.z+mti[1];
- float invZc = 1/(mRi[2][0]*P3Dw.x+mRi[2][1]*P3Dw.y+mRi[2][2]*P3Dw.z+mti[2]);
- double ue = uc + fu * Xc * invZc;
- double ve = vc + fv * Yc * invZc;
- float distX = P2D.x-ue;
- float distY = P2D.y-ve;
- float error2 = distX*distX+distY*distY;
- if(error2<mvMaxError[i])
- {
- mvbInliersi[i]=true;
- mnInliersi++;
- }
- else
- {
- mvbInliersi[i]=false;
- }
- }
- }
- void PnPsolver::set_maximum_number_of_correspondences(int n)
- {
- if (maximum_number_of_correspondences < n) {
- if (pws != 0) delete [] pws;
- if (us != 0) delete [] us;
- if (alphas != 0) delete [] alphas;
- if (pcs != 0) delete [] pcs;
- maximum_number_of_correspondences = n;
- pws = new double[3 * maximum_number_of_correspondences];
- us = new double[2 * maximum_number_of_correspondences];
- alphas = new double[4 * maximum_number_of_correspondences];
- pcs = new double[3 * maximum_number_of_correspondences];
- }
- }
- void PnPsolver::reset_correspondences(void)
- {
- number_of_correspondences = 0;
- }
- void PnPsolver::add_correspondence(double X, double Y, double Z, double u, double v)
- {
- pws[3 * number_of_correspondences ] = X;
- pws[3 * number_of_correspondences + 1] = Y;
- pws[3 * number_of_correspondences + 2] = Z;
- us[2 * number_of_correspondences ] = u;
- us[2 * number_of_correspondences + 1] = v;
- number_of_correspondences++;
- }
- void PnPsolver::choose_control_points(void)
- {
- // Take C0 as the reference points centroid:
- cws[0][0] = cws[0][1] = cws[0][2] = 0;
- for(int i = 0; i < number_of_correspondences; i++)
- for(int j = 0; j < 3; j++)
- cws[0][j] += pws[3 * i + j];
- for(int j = 0; j < 3; j++)
- cws[0][j] /= number_of_correspondences;
- // Take C1, C2, and C3 from PCA on the reference points:
- CvMat * PW0 = cvCreateMat(number_of_correspondences, 3, CV_64F);
- double pw0tpw0[3 * 3], dc[3], uct[3 * 3];
- CvMat PW0tPW0 = cvMat(3, 3, CV_64F, pw0tpw0);
- CvMat DC = cvMat(3, 1, CV_64F, dc);
- CvMat UCt = cvMat(3, 3, CV_64F, uct);
- for(int i = 0; i < number_of_correspondences; i++)
- for(int j = 0; j < 3; j++)
- PW0->data.db[3 * i + j] = pws[3 * i + j] - cws[0][j];
- cvMulTransposed(PW0, &PW0tPW0, 1);
- cvSVD(&PW0tPW0, &DC, &UCt, 0, CV_SVD_MODIFY_A | CV_SVD_U_T);
- cvReleaseMat(&PW0);
- for(int i = 1; i < 4; i++) {
- double k = sqrt(dc[i - 1] / number_of_correspondences);
- for(int j = 0; j < 3; j++)
- cws[i][j] = cws[0][j] + k * uct[3 * (i - 1) + j];
- }
- }
- void PnPsolver::compute_barycentric_coordinates(void)
- {
- double cc[3 * 3], cc_inv[3 * 3];
- CvMat CC = cvMat(3, 3, CV_64F, cc);
- CvMat CC_inv = cvMat(3, 3, CV_64F, cc_inv);
- for(int i = 0; i < 3; i++)
- for(int j = 1; j < 4; j++)
- cc[3 * i + j - 1] = cws[j][i] - cws[0][i];
- cvInvert(&CC, &CC_inv, CV_SVD);
- double * ci = cc_inv;
- for(int i = 0; i < number_of_correspondences; i++) {
- double * pi = pws + 3 * i;
- double * a = alphas + 4 * i;
- for(int j = 0; j < 3; j++)
- a[1 + j] =
- ci[3 * j ] * (pi[0] - cws[0][0]) +
- ci[3 * j + 1] * (pi[1] - cws[0][1]) +
- ci[3 * j + 2] * (pi[2] - cws[0][2]);
- a[0] = 1.0f - a[1] - a[2] - a[3];
- }
- }
- void PnPsolver::fill_M(CvMat * M,
- const int row, const double * as, const double u, const double v)
- {
- double * M1 = M->data.db + row * 12;
- double * M2 = M1 + 12;
- for(int i = 0; i < 4; i++) {
- M1[3 * i ] = as[i] * fu;
- M1[3 * i + 1] = 0.0;
- M1[3 * i + 2] = as[i] * (uc - u);
- M2[3 * i ] = 0.0;
- M2[3 * i + 1] = as[i] * fv;
- M2[3 * i + 2] = as[i] * (vc - v);
- }
- }
- void PnPsolver::compute_ccs(const double * betas, const double * ut)
- {
- for(int i = 0; i < 4; i++)
- ccs[i][0] = ccs[i][1] = ccs[i][2] = 0.0f;
- for(int i = 0; i < 4; i++) {
- const double * v = ut + 12 * (11 - i);
- for(int j = 0; j < 4; j++)
- for(int k = 0; k < 3; k++)
- ccs[j][k] += betas[i] * v[3 * j + k];
- }
- }
- void PnPsolver::compute_pcs(void)
- {
- for(int i = 0; i < number_of_correspondences; i++) {
- double * a = alphas + 4 * i;
- double * pc = pcs + 3 * i;
- for(int j = 0; j < 3; j++)
- pc[j] = a[0] * ccs[0][j] + a[1] * ccs[1][j] + a[2] * ccs[2][j] + a[3] * ccs[3][j];
- }
- }
- double PnPsolver::compute_pose(double R[3][3], double t[3])
- {
- choose_control_points();
- compute_barycentric_coordinates();
- CvMat * M = cvCreateMat(2 * number_of_correspondences, 12, CV_64F);
- for(int i = 0; i < number_of_correspondences; i++)
- fill_M(M, 2 * i, alphas + 4 * i, us[2 * i], us[2 * i + 1]);
- double mtm[12 * 12], d[12], ut[12 * 12];
- CvMat MtM = cvMat(12, 12, CV_64F, mtm);
- CvMat D = cvMat(12, 1, CV_64F, d);
- CvMat Ut = cvMat(12, 12, CV_64F, ut);
- cvMulTransposed(M, &MtM, 1);
- cvSVD(&MtM, &D, &Ut, 0, CV_SVD_MODIFY_A | CV_SVD_U_T);
- cvReleaseMat(&M);
- double l_6x10[6 * 10], rho[6];
- CvMat L_6x10 = cvMat(6, 10, CV_64F, l_6x10);
- CvMat Rho = cvMat(6, 1, CV_64F, rho);
- compute_L_6x10(ut, l_6x10);
- compute_rho(rho);
- double Betas[4][4], rep_errors[4];
- double Rs[4][3][3], ts[4][3];
- find_betas_approx_1(&L_6x10, &Rho, Betas[1]);
- gauss_newton(&L_6x10, &Rho, Betas[1]);
- rep_errors[1] = compute_R_and_t(ut, Betas[1], Rs[1], ts[1]);
- find_betas_approx_2(&L_6x10, &Rho, Betas[2]);
- gauss_newton(&L_6x10, &Rho, Betas[2]);
- rep_errors[2] = compute_R_and_t(ut, Betas[2], Rs[2], ts[2]);
- find_betas_approx_3(&L_6x10, &Rho, Betas[3]);
- gauss_newton(&L_6x10, &Rho, Betas[3]);
- rep_errors[3] = compute_R_and_t(ut, Betas[3], Rs[3], ts[3]);
- int N = 1;
- if (rep_errors[2] < rep_errors[1]) N = 2;
- if (rep_errors[3] < rep_errors[N]) N = 3;
- copy_R_and_t(Rs[N], ts[N], R, t);
- return rep_errors[N];
- }
- void PnPsolver::copy_R_and_t(const double R_src[3][3], const double t_src[3],
- double R_dst[3][3], double t_dst[3])
- {
- for(int i = 0; i < 3; i++) {
- for(int j = 0; j < 3; j++)
- R_dst[i][j] = R_src[i][j];
- t_dst[i] = t_src[i];
- }
- }
- double PnPsolver::dist2(const double * p1, const double * p2)
- {
- return
- (p1[0] - p2[0]) * (p1[0] - p2[0]) +
- (p1[1] - p2[1]) * (p1[1] - p2[1]) +
- (p1[2] - p2[2]) * (p1[2] - p2[2]);
- }
- double PnPsolver::dot(const double * v1, const double * v2)
- {
- return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
- }
- double PnPsolver::reprojection_error(const double R[3][3], const double t[3])
- {
- double sum2 = 0.0;
- for(int i = 0; i < number_of_correspondences; i++) {
- double * pw = pws + 3 * i;
- double Xc = dot(R[0], pw) + t[0];
- double Yc = dot(R[1], pw) + t[1];
- double inv_Zc = 1.0 / (dot(R[2], pw) + t[2]);
- double ue = uc + fu * Xc * inv_Zc;
- double ve = vc + fv * Yc * inv_Zc;
- double u = us[2 * i], v = us[2 * i + 1];
- sum2 += sqrt( (u - ue) * (u - ue) + (v - ve) * (v - ve) );
- }
- return sum2 / number_of_correspondences;
- }
- void PnPsolver::estimate_R_and_t(double R[3][3], double t[3])
- {
- double pc0[3], pw0[3];
- pc0[0] = pc0[1] = pc0[2] = 0.0;
- pw0[0] = pw0[1] = pw0[2] = 0.0;
- for(int i = 0; i < number_of_correspondences; i++) {
- const double * pc = pcs + 3 * i;
- const double * pw = pws + 3 * i;
- for(int j = 0; j < 3; j++) {
- pc0[j] += pc[j];
- pw0[j] += pw[j];
- }
- }
- for(int j = 0; j < 3; j++) {
- pc0[j] /= number_of_correspondences;
- pw0[j] /= number_of_correspondences;
- }
- double abt[3 * 3], abt_d[3], abt_u[3 * 3], abt_v[3 * 3];
- CvMat ABt = cvMat(3, 3, CV_64F, abt);
- CvMat ABt_D = cvMat(3, 1, CV_64F, abt_d);
- CvMat ABt_U = cvMat(3, 3, CV_64F, abt_u);
- CvMat ABt_V = cvMat(3, 3, CV_64F, abt_v);
- cvSetZero(&ABt);
- for(int i = 0; i < number_of_correspondences; i++) {
- double * pc = pcs + 3 * i;
- double * pw = pws + 3 * i;
- for(int j = 0; j < 3; j++) {
- abt[3 * j ] += (pc[j] - pc0[j]) * (pw[0] - pw0[0]);
- abt[3 * j + 1] += (pc[j] - pc0[j]) * (pw[1] - pw0[1]);
- abt[3 * j + 2] += (pc[j] - pc0[j]) * (pw[2] - pw0[2]);
- }
- }
- cvSVD(&ABt, &ABt_D, &ABt_U, &ABt_V, CV_SVD_MODIFY_A);
- for(int i = 0; i < 3; i++)
- for(int j = 0; j < 3; j++)
- R[i][j] = dot(abt_u + 3 * i, abt_v + 3 * j);
- const double det =
- R[0][0] * R[1][1] * R[2][2] + R[0][1] * R[1][2] * R[2][0] + R[0][2] * R[1][0] * R[2][1] -
- R[0][2] * R[1][1] * R[2][0] - R[0][1] * R[1][0] * R[2][2] - R[0][0] * R[1][2] * R[2][1];
- if (det < 0) {
- R[2][0] = -R[2][0];
- R[2][1] = -R[2][1];
- R[2][2] = -R[2][2];
- }
- t[0] = pc0[0] - dot(R[0], pw0);
- t[1] = pc0[1] - dot(R[1], pw0);
- t[2] = pc0[2] - dot(R[2], pw0);
- }
- void PnPsolver::print_pose(const double R[3][3], const double t[3])
- {
- cout << R[0][0] << " " << R[0][1] << " " << R[0][2] << " " << t[0] << endl;
- cout << R[1][0] << " " << R[1][1] << " " << R[1][2] << " " << t[1] << endl;
- cout << R[2][0] << " " << R[2][1] << " " << R[2][2] << " " << t[2] << endl;
- }
- void PnPsolver::solve_for_sign(void)
- {
- if (pcs[2] < 0.0) {
- for(int i = 0; i < 4; i++)
- for(int j = 0; j < 3; j++)
- ccs[i][j] = -ccs[i][j];
- for(int i = 0; i < number_of_correspondences; i++) {
- pcs[3 * i ] = -pcs[3 * i];
- pcs[3 * i + 1] = -pcs[3 * i + 1];
- pcs[3 * i + 2] = -pcs[3 * i + 2];
- }
- }
- }
- double PnPsolver::compute_R_and_t(const double * ut, const double * betas,
- double R[3][3], double t[3])
- {
- compute_ccs(betas, ut);
- compute_pcs();
- solve_for_sign();
- estimate_R_and_t(R, t);
- return reprojection_error(R, t);
- }
- // betas10 = [B11 B12 B22 B13 B23 B33 B14 B24 B34 B44]
- // betas_approx_1 = [B11 B12 B13 B14]
- void PnPsolver::find_betas_approx_1(const CvMat * L_6x10, const CvMat * Rho,
- double * betas)
- {
- double l_6x4[6 * 4], b4[4];
- CvMat L_6x4 = cvMat(6, 4, CV_64F, l_6x4);
- CvMat B4 = cvMat(4, 1, CV_64F, b4);
- for(int i = 0; i < 6; i++) {
- cvmSet(&L_6x4, i, 0, cvmGet(L_6x10, i, 0));
- cvmSet(&L_6x4, i, 1, cvmGet(L_6x10, i, 1));
- cvmSet(&L_6x4, i, 2, cvmGet(L_6x10, i, 3));
- cvmSet(&L_6x4, i, 3, cvmGet(L_6x10, i, 6));
- }
- cvSolve(&L_6x4, Rho, &B4, CV_SVD);
- if (b4[0] < 0) {
- betas[0] = sqrt(-b4[0]);
- betas[1] = -b4[1] / betas[0];
- betas[2] = -b4[2] / betas[0];
- betas[3] = -b4[3] / betas[0];
- } else {
- betas[0] = sqrt(b4[0]);
- betas[1] = b4[1] / betas[0];
- betas[2] = b4[2] / betas[0];
- betas[3] = b4[3] / betas[0];
- }
- }
- // betas10 = [B11 B12 B22 B13 B23 B33 B14 B24 B34 B44]
- // betas_approx_2 = [B11 B12 B22 ]
- void PnPsolver::find_betas_approx_2(const CvMat * L_6x10, const CvMat * Rho,
- double * betas)
- {
- double l_6x3[6 * 3], b3[3];
- CvMat L_6x3 = cvMat(6, 3, CV_64F, l_6x3);
- CvMat B3 = cvMat(3, 1, CV_64F, b3);
- for(int i = 0; i < 6; i++) {
- cvmSet(&L_6x3, i, 0, cvmGet(L_6x10, i, 0));
- cvmSet(&L_6x3, i, 1, cvmGet(L_6x10, i, 1));
- cvmSet(&L_6x3, i, 2, cvmGet(L_6x10, i, 2));
- }
- cvSolve(&L_6x3, Rho, &B3, CV_SVD);
- if (b3[0] < 0) {
- betas[0] = sqrt(-b3[0]);
- betas[1] = (b3[2] < 0) ? sqrt(-b3[2]) : 0.0;
- } else {
- betas[0] = sqrt(b3[0]);
- betas[1] = (b3[2] > 0) ? sqrt(b3[2]) : 0.0;
- }
- if (b3[1] < 0) betas[0] = -betas[0];
- betas[2] = 0.0;
- betas[3] = 0.0;
- }
- // betas10 = [B11 B12 B22 B13 B23 B33 B14 B24 B34 B44]
- // betas_approx_3 = [B11 B12 B22 B13 B23 ]
- void PnPsolver::find_betas_approx_3(const CvMat * L_6x10, const CvMat * Rho,
- double * betas)
- {
- double l_6x5[6 * 5], b5[5];
- CvMat L_6x5 = cvMat(6, 5, CV_64F, l_6x5);
- CvMat B5 = cvMat(5, 1, CV_64F, b5);
- for(int i = 0; i < 6; i++) {
- cvmSet(&L_6x5, i, 0, cvmGet(L_6x10, i, 0));
- cvmSet(&L_6x5, i, 1, cvmGet(L_6x10, i, 1));
- cvmSet(&L_6x5, i, 2, cvmGet(L_6x10, i, 2));
- cvmSet(&L_6x5, i, 3, cvmGet(L_6x10, i, 3));
- cvmSet(&L_6x5, i, 4, cvmGet(L_6x10, i, 4));
- }
- cvSolve(&L_6x5, Rho, &B5, CV_SVD);
- if (b5[0] < 0) {
- betas[0] = sqrt(-b5[0]);
- betas[1] = (b5[2] < 0) ? sqrt(-b5[2]) : 0.0;
- } else {
- betas[0] = sqrt(b5[0]);
- betas[1] = (b5[2] > 0) ? sqrt(b5[2]) : 0.0;
- }
- if (b5[1] < 0) betas[0] = -betas[0];
- betas[2] = b5[3] / betas[0];
- betas[3] = 0.0;
- }
- void PnPsolver::compute_L_6x10(const double * ut, double * l_6x10)
- {
- const double * v[4];
- v[0] = ut + 12 * 11;
- v[1] = ut + 12 * 10;
- v[2] = ut + 12 * 9;
- v[3] = ut + 12 * 8;
- double dv[4][6][3];
- for(int i = 0; i < 4; i++) {
- int a = 0, b = 1;
- for(int j = 0; j < 6; j++) {
- dv[i][j][0] = v[i][3 * a ] - v[i][3 * b];
- dv[i][j][1] = v[i][3 * a + 1] - v[i][3 * b + 1];
- dv[i][j][2] = v[i][3 * a + 2] - v[i][3 * b + 2];
- b++;
- if (b > 3) {
- a++;
- b = a + 1;
- }
- }
- }
- for(int i = 0; i < 6; i++) {
- double * row = l_6x10 + 10 * i;
- row[0] = dot(dv[0][i], dv[0][i]);
- row[1] = 2.0f * dot(dv[0][i], dv[1][i]);
- row[2] = dot(dv[1][i], dv[1][i]);
- row[3] = 2.0f * dot(dv[0][i], dv[2][i]);
- row[4] = 2.0f * dot(dv[1][i], dv[2][i]);
- row[5] = dot(dv[2][i], dv[2][i]);
- row[6] = 2.0f * dot(dv[0][i], dv[3][i]);
- row[7] = 2.0f * dot(dv[1][i], dv[3][i]);
- row[8] = 2.0f * dot(dv[2][i], dv[3][i]);
- row[9] = dot(dv[3][i], dv[3][i]);
- }
- }
- void PnPsolver::compute_rho(double * rho)
- {
- rho[0] = dist2(cws[0], cws[1]);
- rho[1] = dist2(cws[0], cws[2]);
- rho[2] = dist2(cws[0], cws[3]);
- rho[3] = dist2(cws[1], cws[2]);
- rho[4] = dist2(cws[1], cws[3]);
- rho[5] = dist2(cws[2], cws[3]);
- }
- void PnPsolver::compute_A_and_b_gauss_newton(const double * l_6x10, const double * rho,
- double betas[4], CvMat * A, CvMat * b)
- {
- for(int i = 0; i < 6; i++) {
- const double * rowL = l_6x10 + i * 10;
- double * rowA = A->data.db + i * 4;
- rowA[0] = 2 * rowL[0] * betas[0] + rowL[1] * betas[1] + rowL[3] * betas[2] + rowL[6] * betas[3];
- rowA[1] = rowL[1] * betas[0] + 2 * rowL[2] * betas[1] + rowL[4] * betas[2] + rowL[7] * betas[3];
- rowA[2] = rowL[3] * betas[0] + rowL[4] * betas[1] + 2 * rowL[5] * betas[2] + rowL[8] * betas[3];
- rowA[3] = rowL[6] * betas[0] + rowL[7] * betas[1] + rowL[8] * betas[2] + 2 * rowL[9] * betas[3];
- cvmSet(b, i, 0, rho[i] -
- (
- rowL[0] * betas[0] * betas[0] +
- rowL[1] * betas[0] * betas[1] +
- rowL[2] * betas[1] * betas[1] +
- rowL[3] * betas[0] * betas[2] +
- rowL[4] * betas[1] * betas[2] +
- rowL[5] * betas[2] * betas[2] +
- rowL[6] * betas[0] * betas[3] +
- rowL[7] * betas[1] * betas[3] +
- rowL[8] * betas[2] * betas[3] +
- rowL[9] * betas[3] * betas[3]
- ));
- }
- }
- void PnPsolver::gauss_newton(const CvMat * L_6x10, const CvMat * Rho,
- double betas[4])
- {
- const int iterations_number = 5;
- double a[6*4], b[6], x[4];
- CvMat A = cvMat(6, 4, CV_64F, a);
- CvMat B = cvMat(6, 1, CV_64F, b);
- CvMat X = cvMat(4, 1, CV_64F, x);
- for(int k = 0; k < iterations_number; k++) {
- compute_A_and_b_gauss_newton(L_6x10->data.db, Rho->data.db,
- betas, &A, &B);
- qr_solve(&A, &B, &X);
- for(int i = 0; i < 4; i++)
- betas[i] += x[i];
- }
- }
- void PnPsolver::qr_solve(CvMat * A, CvMat * b, CvMat * X)
- {
- static int max_nr = 0;
- static double * A1, * A2;
- const int nr = A->rows;
- const int nc = A->cols;
- if (max_nr != 0 && max_nr < nr) {
- delete [] A1;
- delete [] A2;
- }
- if (max_nr < nr) {
- max_nr = nr;
- A1 = new double[nr];
- A2 = new double[nr];
- }
- double * pA = A->data.db, * ppAkk = pA;
- for(int k = 0; k < nc; k++) {
- double * ppAik = ppAkk, eta = fabs(*ppAik);
- for(int i = k + 1; i < nr; i++) {
- double elt = fabs(*ppAik);
- if (eta < elt) eta = elt;
- ppAik += nc;
- }
- if (eta == 0) {
- A1[k] = A2[k] = 0.0;
- cerr << "God damnit, A is singular, this shouldn't happen." << endl;
- return;
- } else {
- double * ppAik = ppAkk, sum = 0.0, inv_eta = 1. / eta;
- for(int i = k; i < nr; i++) {
- *ppAik *= inv_eta;
- sum += *ppAik * *ppAik;
- ppAik += nc;
- }
- double sigma = sqrt(sum);
- if (*ppAkk < 0)
- sigma = -sigma;
- *ppAkk += sigma;
- A1[k] = sigma * *ppAkk;
- A2[k] = -eta * sigma;
- for(int j = k + 1; j < nc; j++) {
- double * ppAik = ppAkk, sum = 0;
- for(int i = k; i < nr; i++) {
- sum += *ppAik * ppAik[j - k];
- ppAik += nc;
- }
- double tau = sum / A1[k];
- ppAik = ppAkk;
- for(int i = k; i < nr; i++) {
- ppAik[j - k] -= tau * *ppAik;
- ppAik += nc;
- }
- }
- }
- ppAkk += nc + 1;
- }
- // b <- Qt b
- double * ppAjj = pA, * pb = b->data.db;
- for(int j = 0; j < nc; j++) {
- double * ppAij = ppAjj, tau = 0;
- for(int i = j; i < nr; i++) {
- tau += *ppAij * pb[i];
- ppAij += nc;
- }
- tau /= A1[j];
- ppAij = ppAjj;
- for(int i = j; i < nr; i++) {
- pb[i] -= tau * *ppAij;
- ppAij += nc;
- }
- ppAjj += nc + 1;
- }
- // X = R-1 b
- double * pX = X->data.db;
- pX[nc - 1] = pb[nc - 1] / A2[nc - 1];
- for(int i = nc - 2; i >= 0; i--) {
- double * ppAij = pA + i * nc + (i + 1), sum = 0;
- for(int j = i + 1; j < nc; j++) {
- sum += *ppAij * pX[j];
- ppAij++;
- }
- pX[i] = (pb[i] - sum) / A2[i];
- }
- }
- void PnPsolver::relative_error(double & rot_err, double & transl_err,
- const double Rtrue[3][3], const double ttrue[3],
- const double Rest[3][3], const double test[3])
- {
- double qtrue[4], qest[4];
- mat_to_quat(Rtrue, qtrue);
- mat_to_quat(Rest, qest);
- double rot_err1 = sqrt((qtrue[0] - qest[0]) * (qtrue[0] - qest[0]) +
- (qtrue[1] - qest[1]) * (qtrue[1] - qest[1]) +
- (qtrue[2] - qest[2]) * (qtrue[2] - qest[2]) +
- (qtrue[3] - qest[3]) * (qtrue[3] - qest[3]) ) /
- sqrt(qtrue[0] * qtrue[0] + qtrue[1] * qtrue[1] + qtrue[2] * qtrue[2] + qtrue[3] * qtrue[3]);
- double rot_err2 = sqrt((qtrue[0] + qest[0]) * (qtrue[0] + qest[0]) +
- (qtrue[1] + qest[1]) * (qtrue[1] + qest[1]) +
- (qtrue[2] + qest[2]) * (qtrue[2] + qest[2]) +
- (qtrue[3] + qest[3]) * (qtrue[3] + qest[3]) ) /
- sqrt(qtrue[0] * qtrue[0] + qtrue[1] * qtrue[1] + qtrue[2] * qtrue[2] + qtrue[3] * qtrue[3]);
- rot_err = min(rot_err1, rot_err2);
- transl_err =
- sqrt((ttrue[0] - test[0]) * (ttrue[0] - test[0]) +
- (ttrue[1] - test[1]) * (ttrue[1] - test[1]) +
- (ttrue[2] - test[2]) * (ttrue[2] - test[2])) /
- sqrt(ttrue[0] * ttrue[0] + ttrue[1] * ttrue[1] + ttrue[2] * ttrue[2]);
- }
- void PnPsolver::mat_to_quat(const double R[3][3], double q[4])
- {
- double tr = R[0][0] + R[1][1] + R[2][2];
- double n4;
- if (tr > 0.0f) {
- q[0] = R[1][2] - R[2][1];
- q[1] = R[2][0] - R[0][2];
- q[2] = R[0][1] - R[1][0];
- q[3] = tr + 1.0f;
- n4 = q[3];
- } else if ( (R[0][0] > R[1][1]) && (R[0][0] > R[2][2]) ) {
- q[0] = 1.0f + R[0][0] - R[1][1] - R[2][2];
- q[1] = R[1][0] + R[0][1];
- q[2] = R[2][0] + R[0][2];
- q[3] = R[1][2] - R[2][1];
- n4 = q[0];
- } else if (R[1][1] > R[2][2]) {
- q[0] = R[1][0] + R[0][1];
- q[1] = 1.0f + R[1][1] - R[0][0] - R[2][2];
- q[2] = R[2][1] + R[1][2];
- q[3] = R[2][0] - R[0][2];
- n4 = q[1];
- } else {
- q[0] = R[2][0] + R[0][2];
- q[1] = R[2][1] + R[1][2];
- q[2] = 1.0f + R[2][2] - R[0][0] - R[1][1];
- q[3] = R[0][1] - R[1][0];
- n4 = q[2];
- }
- double scale = 0.5f / double(sqrt(n4));
- q[0] *= scale;
- q[1] *= scale;
- q[2] *= scale;
- q[3] *= scale;
- }
- } //namespace ORB_SLAM
|