123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179 |
- /**
- * This file is part of ORB-SLAM3
- *
- * Copyright (C) 2017-2020 Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
- * Copyright (C) 2014-2016 Raúl Mur-Artal, José M.M. Montiel and Juan D. Tardós, University of Zaragoza.
- *
- * ORB-SLAM3 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
- * License as published by the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * ORB-SLAM3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
- * the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along with ORB-SLAM3.
- * If not, see <http://www.gnu.org/licenses/>.
- */
- /**
- * Software License Agreement (BSD License)
- *
- * Copyright (c) 2009, Willow Garage, Inc.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above
- * copyright notice, this list of conditions and the following
- * disclaimer in the documentation and/or other materials provided
- * with the distribution.
- * * Neither the name of the Willow Garage nor the names of its
- * contributors may be used to endorse or promote products derived
- * from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
- * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
- * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
- * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
- * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- * POSSIBILITY OF SUCH DAMAGE.
- *
- */
- #include <opencv2/core/core.hpp>
- #include <opencv2/highgui/highgui.hpp>
- #include <opencv2/features2d/features2d.hpp>
- #include <opencv2/imgproc/imgproc.hpp>
- #include <vector>
- #include <iostream>
- #include "ORBextractor.h"
- using namespace cv;
- using namespace std;
- namespace ORB_SLAM3
- {
- const int PATCH_SIZE = 31;
- const int HALF_PATCH_SIZE = 15;
- const int EDGE_THRESHOLD = 19;
- static float IC_Angle(const Mat& image, Point2f pt, const vector<int> & u_max)
- {
- int m_01 = 0, m_10 = 0;
- const uchar* center = &image.at<uchar> (cvRound(pt.y), cvRound(pt.x));
- // Treat the center line differently, v=0
- for (int u = -HALF_PATCH_SIZE; u <= HALF_PATCH_SIZE; ++u)
- m_10 += u * center[u];
- // Go line by line in the circuI853lar patch
- int step = (int)image.step1();
- for (int v = 1; v <= HALF_PATCH_SIZE; ++v)
- {
- // Proceed over the two lines
- int v_sum = 0;
- int d = u_max[v];
- for (int u = -d; u <= d; ++u)
- {
- int val_plus = center[u + v*step], val_minus = center[u - v*step];
- v_sum += (val_plus - val_minus);
- m_10 += u * (val_plus + val_minus);
- }
- m_01 += v * v_sum;
- }
- return fastAtan2((float)m_01, (float)m_10);
- }
- const float factorPI = (float)(CV_PI/180.f);
- static void computeOrbDescriptor(const KeyPoint& kpt,
- const Mat& img, const Point* pattern,
- uchar* desc)
- {
- float angle = (float)kpt.angle*factorPI;
- float a = (float)cos(angle), b = (float)sin(angle);
- const uchar* center = &img.at<uchar>(cvRound(kpt.pt.y), cvRound(kpt.pt.x));
- const int step = (int)img.step;
- #define GET_VALUE(idx) \
- center[cvRound(pattern[idx].x*b + pattern[idx].y*a)*step + \
- cvRound(pattern[idx].x*a - pattern[idx].y*b)]
- for (int i = 0; i < 32; ++i, pattern += 16)
- {
- int t0, t1, val;
- t0 = GET_VALUE(0); t1 = GET_VALUE(1);
- val = t0 < t1;
- t0 = GET_VALUE(2); t1 = GET_VALUE(3);
- val |= (t0 < t1) << 1;
- t0 = GET_VALUE(4); t1 = GET_VALUE(5);
- val |= (t0 < t1) << 2;
- t0 = GET_VALUE(6); t1 = GET_VALUE(7);
- val |= (t0 < t1) << 3;
- t0 = GET_VALUE(8); t1 = GET_VALUE(9);
- val |= (t0 < t1) << 4;
- t0 = GET_VALUE(10); t1 = GET_VALUE(11);
- val |= (t0 < t1) << 5;
- t0 = GET_VALUE(12); t1 = GET_VALUE(13);
- val |= (t0 < t1) << 6;
- t0 = GET_VALUE(14); t1 = GET_VALUE(15);
- val |= (t0 < t1) << 7;
- desc[i] = (uchar)val;
- }
- #undef GET_VALUE
- }
- static int bit_pattern_31_[256*4] =
- {
- 8,-3, 9,5/*mean (0), correlation (0)*/,
- 4,2, 7,-12/*mean (1.12461e-05), correlation (0.0437584)*/,
- -11,9, -8,2/*mean (3.37382e-05), correlation (0.0617409)*/,
- 7,-12, 12,-13/*mean (5.62303e-05), correlation (0.0636977)*/,
- 2,-13, 2,12/*mean (0.000134953), correlation (0.085099)*/,
- 1,-7, 1,6/*mean (0.000528565), correlation (0.0857175)*/,
- -2,-10, -2,-4/*mean (0.0188821), correlation (0.0985774)*/,
- -13,-13, -11,-8/*mean (0.0363135), correlation (0.0899616)*/,
- -13,-3, -12,-9/*mean (0.121806), correlation (0.099849)*/,
- 10,4, 11,9/*mean (0.122065), correlation (0.093285)*/,
- -13,-8, -8,-9/*mean (0.162787), correlation (0.0942748)*/,
- -11,7, -9,12/*mean (0.21561), correlation (0.0974438)*/,
- 7,7, 12,6/*mean (0.160583), correlation (0.130064)*/,
- -4,-5, -3,0/*mean (0.228171), correlation (0.132998)*/,
- -13,2, -12,-3/*mean (0.00997526), correlation (0.145926)*/,
- -9,0, -7,5/*mean (0.198234), correlation (0.143636)*/,
- 12,-6, 12,-1/*mean (0.0676226), correlation (0.16689)*/,
- -3,6, -2,12/*mean (0.166847), correlation (0.171682)*/,
- -6,-13, -4,-8/*mean (0.101215), correlation (0.179716)*/,
- 11,-13, 12,-8/*mean (0.200641), correlation (0.192279)*/,
- 4,7, 5,1/*mean (0.205106), correlation (0.186848)*/,
- 5,-3, 10,-3/*mean (0.234908), correlation (0.192319)*/,
- 3,-7, 6,12/*mean (0.0709964), correlation (0.210872)*/,
- -8,-7, -6,-2/*mean (0.0939834), correlation (0.212589)*/,
- -2,11, -1,-10/*mean (0.127778), correlation (0.20866)*/,
- -13,12, -8,10/*mean (0.14783), correlation (0.206356)*/,
- -7,3, -5,-3/*mean (0.182141), correlation (0.198942)*/,
- -4,2, -3,7/*mean (0.188237), correlation (0.21384)*/,
- -10,-12, -6,11/*mean (0.14865), correlation (0.23571)*/,
- 5,-12, 6,-7/*mean (0.222312), correlation (0.23324)*/,
- 5,-6, 7,-1/*mean (0.229082), correlation (0.23389)*/,
- 1,0, 4,-5/*mean (0.241577), correlation (0.215286)*/,
- 9,11, 11,-13/*mean (0.00338507), correlation (0.251373)*/,
- 4,7, 4,12/*mean (0.131005), correlation (0.257622)*/,
- 2,-1, 4,4/*mean (0.152755), correlation (0.255205)*/,
- -4,-12, -2,7/*mean (0.182771), correlation (0.244867)*/,
- -8,-5, -7,-10/*mean (0.186898), correlation (0.23901)*/,
- 4,11, 9,12/*mean (0.226226), correlation (0.258255)*/,
- 0,-8, 1,-13/*mean (0.0897886), correlation (0.274827)*/,
- -13,-2, -8,2/*mean (0.148774), correlation (0.28065)*/,
- -3,-2, -2,3/*mean (0.153048), correlation (0.283063)*/,
- -6,9, -4,-9/*mean (0.169523), correlation (0.278248)*/,
- 8,12, 10,7/*mean (0.225337), correlation (0.282851)*/,
- 0,9, 1,3/*mean (0.226687), correlation (0.278734)*/,
- 7,-5, 11,-10/*mean (0.00693882), correlation (0.305161)*/,
- -13,-6, -11,0/*mean (0.0227283), correlation (0.300181)*/,
- 10,7, 12,1/*mean (0.125517), correlation (0.31089)*/,
- -6,-3, -6,12/*mean (0.131748), correlation (0.312779)*/,
- 10,-9, 12,-4/*mean (0.144827), correlation (0.292797)*/,
- -13,8, -8,-12/*mean (0.149202), correlation (0.308918)*/,
- -13,0, -8,-4/*mean (0.160909), correlation (0.310013)*/,
- 3,3, 7,8/*mean (0.177755), correlation (0.309394)*/,
- 5,7, 10,-7/*mean (0.212337), correlation (0.310315)*/,
- -1,7, 1,-12/*mean (0.214429), correlation (0.311933)*/,
- 3,-10, 5,6/*mean (0.235807), correlation (0.313104)*/,
- 2,-4, 3,-10/*mean (0.00494827), correlation (0.344948)*/,
- -13,0, -13,5/*mean (0.0549145), correlation (0.344675)*/,
- -13,-7, -12,12/*mean (0.103385), correlation (0.342715)*/,
- -13,3, -11,8/*mean (0.134222), correlation (0.322922)*/,
- -7,12, -4,7/*mean (0.153284), correlation (0.337061)*/,
- 6,-10, 12,8/*mean (0.154881), correlation (0.329257)*/,
- -9,-1, -7,-6/*mean (0.200967), correlation (0.33312)*/,
- -2,-5, 0,12/*mean (0.201518), correlation (0.340635)*/,
- -12,5, -7,5/*mean (0.207805), correlation (0.335631)*/,
- 3,-10, 8,-13/*mean (0.224438), correlation (0.34504)*/,
- -7,-7, -4,5/*mean (0.239361), correlation (0.338053)*/,
- -3,-2, -1,-7/*mean (0.240744), correlation (0.344322)*/,
- 2,9, 5,-11/*mean (0.242949), correlation (0.34145)*/,
- -11,-13, -5,-13/*mean (0.244028), correlation (0.336861)*/,
- -1,6, 0,-1/*mean (0.247571), correlation (0.343684)*/,
- 5,-3, 5,2/*mean (0.000697256), correlation (0.357265)*/,
- -4,-13, -4,12/*mean (0.00213675), correlation (0.373827)*/,
- -9,-6, -9,6/*mean (0.0126856), correlation (0.373938)*/,
- -12,-10, -8,-4/*mean (0.0152497), correlation (0.364237)*/,
- 10,2, 12,-3/*mean (0.0299933), correlation (0.345292)*/,
- 7,12, 12,12/*mean (0.0307242), correlation (0.366299)*/,
- -7,-13, -6,5/*mean (0.0534975), correlation (0.368357)*/,
- -4,9, -3,4/*mean (0.099865), correlation (0.372276)*/,
- 7,-1, 12,2/*mean (0.117083), correlation (0.364529)*/,
- -7,6, -5,1/*mean (0.126125), correlation (0.369606)*/,
- -13,11, -12,5/*mean (0.130364), correlation (0.358502)*/,
- -3,7, -2,-6/*mean (0.131691), correlation (0.375531)*/,
- 7,-8, 12,-7/*mean (0.160166), correlation (0.379508)*/,
- -13,-7, -11,-12/*mean (0.167848), correlation (0.353343)*/,
- 1,-3, 12,12/*mean (0.183378), correlation (0.371916)*/,
- 2,-6, 3,0/*mean (0.228711), correlation (0.371761)*/,
- -4,3, -2,-13/*mean (0.247211), correlation (0.364063)*/,
- -1,-13, 1,9/*mean (0.249325), correlation (0.378139)*/,
- 7,1, 8,-6/*mean (0.000652272), correlation (0.411682)*/,
- 1,-1, 3,12/*mean (0.00248538), correlation (0.392988)*/,
- 9,1, 12,6/*mean (0.0206815), correlation (0.386106)*/,
- -1,-9, -1,3/*mean (0.0364485), correlation (0.410752)*/,
- -13,-13, -10,5/*mean (0.0376068), correlation (0.398374)*/,
- 7,7, 10,12/*mean (0.0424202), correlation (0.405663)*/,
- 12,-5, 12,9/*mean (0.0942645), correlation (0.410422)*/,
- 6,3, 7,11/*mean (0.1074), correlation (0.413224)*/,
- 5,-13, 6,10/*mean (0.109256), correlation (0.408646)*/,
- 2,-12, 2,3/*mean (0.131691), correlation (0.416076)*/,
- 3,8, 4,-6/*mean (0.165081), correlation (0.417569)*/,
- 2,6, 12,-13/*mean (0.171874), correlation (0.408471)*/,
- 9,-12, 10,3/*mean (0.175146), correlation (0.41296)*/,
- -8,4, -7,9/*mean (0.183682), correlation (0.402956)*/,
- -11,12, -4,-6/*mean (0.184672), correlation (0.416125)*/,
- 1,12, 2,-8/*mean (0.191487), correlation (0.386696)*/,
- 6,-9, 7,-4/*mean (0.192668), correlation (0.394771)*/,
- 2,3, 3,-2/*mean (0.200157), correlation (0.408303)*/,
- 6,3, 11,0/*mean (0.204588), correlation (0.411762)*/,
- 3,-3, 8,-8/*mean (0.205904), correlation (0.416294)*/,
- 7,8, 9,3/*mean (0.213237), correlation (0.409306)*/,
- -11,-5, -6,-4/*mean (0.243444), correlation (0.395069)*/,
- -10,11, -5,10/*mean (0.247672), correlation (0.413392)*/,
- -5,-8, -3,12/*mean (0.24774), correlation (0.411416)*/,
- -10,5, -9,0/*mean (0.00213675), correlation (0.454003)*/,
- 8,-1, 12,-6/*mean (0.0293635), correlation (0.455368)*/,
- 4,-6, 6,-11/*mean (0.0404971), correlation (0.457393)*/,
- -10,12, -8,7/*mean (0.0481107), correlation (0.448364)*/,
- 4,-2, 6,7/*mean (0.050641), correlation (0.455019)*/,
- -2,0, -2,12/*mean (0.0525978), correlation (0.44338)*/,
- -5,-8, -5,2/*mean (0.0629667), correlation (0.457096)*/,
- 7,-6, 10,12/*mean (0.0653846), correlation (0.445623)*/,
- -9,-13, -8,-8/*mean (0.0858749), correlation (0.449789)*/,
- -5,-13, -5,-2/*mean (0.122402), correlation (0.450201)*/,
- 8,-8, 9,-13/*mean (0.125416), correlation (0.453224)*/,
- -9,-11, -9,0/*mean (0.130128), correlation (0.458724)*/,
- 1,-8, 1,-2/*mean (0.132467), correlation (0.440133)*/,
- 7,-4, 9,1/*mean (0.132692), correlation (0.454)*/,
- -2,1, -1,-4/*mean (0.135695), correlation (0.455739)*/,
- 11,-6, 12,-11/*mean (0.142904), correlation (0.446114)*/,
- -12,-9, -6,4/*mean (0.146165), correlation (0.451473)*/,
- 3,7, 7,12/*mean (0.147627), correlation (0.456643)*/,
- 5,5, 10,8/*mean (0.152901), correlation (0.455036)*/,
- 0,-4, 2,8/*mean (0.167083), correlation (0.459315)*/,
- -9,12, -5,-13/*mean (0.173234), correlation (0.454706)*/,
- 0,7, 2,12/*mean (0.18312), correlation (0.433855)*/,
- -1,2, 1,7/*mean (0.185504), correlation (0.443838)*/,
- 5,11, 7,-9/*mean (0.185706), correlation (0.451123)*/,
- 3,5, 6,-8/*mean (0.188968), correlation (0.455808)*/,
- -13,-4, -8,9/*mean (0.191667), correlation (0.459128)*/,
- -5,9, -3,-3/*mean (0.193196), correlation (0.458364)*/,
- -4,-7, -3,-12/*mean (0.196536), correlation (0.455782)*/,
- 6,5, 8,0/*mean (0.1972), correlation (0.450481)*/,
- -7,6, -6,12/*mean (0.199438), correlation (0.458156)*/,
- -13,6, -5,-2/*mean (0.211224), correlation (0.449548)*/,
- 1,-10, 3,10/*mean (0.211718), correlation (0.440606)*/,
- 4,1, 8,-4/*mean (0.213034), correlation (0.443177)*/,
- -2,-2, 2,-13/*mean (0.234334), correlation (0.455304)*/,
- 2,-12, 12,12/*mean (0.235684), correlation (0.443436)*/,
- -2,-13, 0,-6/*mean (0.237674), correlation (0.452525)*/,
- 4,1, 9,3/*mean (0.23962), correlation (0.444824)*/,
- -6,-10, -3,-5/*mean (0.248459), correlation (0.439621)*/,
- -3,-13, -1,1/*mean (0.249505), correlation (0.456666)*/,
- 7,5, 12,-11/*mean (0.00119208), correlation (0.495466)*/,
- 4,-2, 5,-7/*mean (0.00372245), correlation (0.484214)*/,
- -13,9, -9,-5/*mean (0.00741116), correlation (0.499854)*/,
- 7,1, 8,6/*mean (0.0208952), correlation (0.499773)*/,
- 7,-8, 7,6/*mean (0.0220085), correlation (0.501609)*/,
- -7,-4, -7,1/*mean (0.0233806), correlation (0.496568)*/,
- -8,11, -7,-8/*mean (0.0236505), correlation (0.489719)*/,
- -13,6, -12,-8/*mean (0.0268781), correlation (0.503487)*/,
- 2,4, 3,9/*mean (0.0323324), correlation (0.501938)*/,
- 10,-5, 12,3/*mean (0.0399235), correlation (0.494029)*/,
- -6,-5, -6,7/*mean (0.0420153), correlation (0.486579)*/,
- 8,-3, 9,-8/*mean (0.0548021), correlation (0.484237)*/,
- 2,-12, 2,8/*mean (0.0616622), correlation (0.496642)*/,
- -11,-2, -10,3/*mean (0.0627755), correlation (0.498563)*/,
- -12,-13, -7,-9/*mean (0.0829622), correlation (0.495491)*/,
- -11,0, -10,-5/*mean (0.0843342), correlation (0.487146)*/,
- 5,-3, 11,8/*mean (0.0929937), correlation (0.502315)*/,
- -2,-13, -1,12/*mean (0.113327), correlation (0.48941)*/,
- -1,-8, 0,9/*mean (0.132119), correlation (0.467268)*/,
- -13,-11, -12,-5/*mean (0.136269), correlation (0.498771)*/,
- -10,-2, -10,11/*mean (0.142173), correlation (0.498714)*/,
- -3,9, -2,-13/*mean (0.144141), correlation (0.491973)*/,
- 2,-3, 3,2/*mean (0.14892), correlation (0.500782)*/,
- -9,-13, -4,0/*mean (0.150371), correlation (0.498211)*/,
- -4,6, -3,-10/*mean (0.152159), correlation (0.495547)*/,
- -4,12, -2,-7/*mean (0.156152), correlation (0.496925)*/,
- -6,-11, -4,9/*mean (0.15749), correlation (0.499222)*/,
- 6,-3, 6,11/*mean (0.159211), correlation (0.503821)*/,
- -13,11, -5,5/*mean (0.162427), correlation (0.501907)*/,
- 11,11, 12,6/*mean (0.16652), correlation (0.497632)*/,
- 7,-5, 12,-2/*mean (0.169141), correlation (0.484474)*/,
- -1,12, 0,7/*mean (0.169456), correlation (0.495339)*/,
- -4,-8, -3,-2/*mean (0.171457), correlation (0.487251)*/,
- -7,1, -6,7/*mean (0.175), correlation (0.500024)*/,
- -13,-12, -8,-13/*mean (0.175866), correlation (0.497523)*/,
- -7,-2, -6,-8/*mean (0.178273), correlation (0.501854)*/,
- -8,5, -6,-9/*mean (0.181107), correlation (0.494888)*/,
- -5,-1, -4,5/*mean (0.190227), correlation (0.482557)*/,
- -13,7, -8,10/*mean (0.196739), correlation (0.496503)*/,
- 1,5, 5,-13/*mean (0.19973), correlation (0.499759)*/,
- 1,0, 10,-13/*mean (0.204465), correlation (0.49873)*/,
- 9,12, 10,-1/*mean (0.209334), correlation (0.49063)*/,
- 5,-8, 10,-9/*mean (0.211134), correlation (0.503011)*/,
- -1,11, 1,-13/*mean (0.212), correlation (0.499414)*/,
- -9,-3, -6,2/*mean (0.212168), correlation (0.480739)*/,
- -1,-10, 1,12/*mean (0.212731), correlation (0.502523)*/,
- -13,1, -8,-10/*mean (0.21327), correlation (0.489786)*/,
- 8,-11, 10,-6/*mean (0.214159), correlation (0.488246)*/,
- 2,-13, 3,-6/*mean (0.216993), correlation (0.50287)*/,
- 7,-13, 12,-9/*mean (0.223639), correlation (0.470502)*/,
- -10,-10, -5,-7/*mean (0.224089), correlation (0.500852)*/,
- -10,-8, -8,-13/*mean (0.228666), correlation (0.502629)*/,
- 4,-6, 8,5/*mean (0.22906), correlation (0.498305)*/,
- 3,12, 8,-13/*mean (0.233378), correlation (0.503825)*/,
- -4,2, -3,-3/*mean (0.234323), correlation (0.476692)*/,
- 5,-13, 10,-12/*mean (0.236392), correlation (0.475462)*/,
- 4,-13, 5,-1/*mean (0.236842), correlation (0.504132)*/,
- -9,9, -4,3/*mean (0.236977), correlation (0.497739)*/,
- 0,3, 3,-9/*mean (0.24314), correlation (0.499398)*/,
- -12,1, -6,1/*mean (0.243297), correlation (0.489447)*/,
- 3,2, 4,-8/*mean (0.00155196), correlation (0.553496)*/,
- -10,-10, -10,9/*mean (0.00239541), correlation (0.54297)*/,
- 8,-13, 12,12/*mean (0.0034413), correlation (0.544361)*/,
- -8,-12, -6,-5/*mean (0.003565), correlation (0.551225)*/,
- 2,2, 3,7/*mean (0.00835583), correlation (0.55285)*/,
- 10,6, 11,-8/*mean (0.00885065), correlation (0.540913)*/,
- 6,8, 8,-12/*mean (0.0101552), correlation (0.551085)*/,
- -7,10, -6,5/*mean (0.0102227), correlation (0.533635)*/,
- -3,-9, -3,9/*mean (0.0110211), correlation (0.543121)*/,
- -1,-13, -1,5/*mean (0.0113473), correlation (0.550173)*/,
- -3,-7, -3,4/*mean (0.0140913), correlation (0.554774)*/,
- -8,-2, -8,3/*mean (0.017049), correlation (0.55461)*/,
- 4,2, 12,12/*mean (0.01778), correlation (0.546921)*/,
- 2,-5, 3,11/*mean (0.0224022), correlation (0.549667)*/,
- 6,-9, 11,-13/*mean (0.029161), correlation (0.546295)*/,
- 3,-1, 7,12/*mean (0.0303081), correlation (0.548599)*/,
- 11,-1, 12,4/*mean (0.0355151), correlation (0.523943)*/,
- -3,0, -3,6/*mean (0.0417904), correlation (0.543395)*/,
- 4,-11, 4,12/*mean (0.0487292), correlation (0.542818)*/,
- 2,-4, 2,1/*mean (0.0575124), correlation (0.554888)*/,
- -10,-6, -8,1/*mean (0.0594242), correlation (0.544026)*/,
- -13,7, -11,1/*mean (0.0597391), correlation (0.550524)*/,
- -13,12, -11,-13/*mean (0.0608974), correlation (0.55383)*/,
- 6,0, 11,-13/*mean (0.065126), correlation (0.552006)*/,
- 0,-1, 1,4/*mean (0.074224), correlation (0.546372)*/,
- -13,3, -9,-2/*mean (0.0808592), correlation (0.554875)*/,
- -9,8, -6,-3/*mean (0.0883378), correlation (0.551178)*/,
- -13,-6, -8,-2/*mean (0.0901035), correlation (0.548446)*/,
- 5,-9, 8,10/*mean (0.0949843), correlation (0.554694)*/,
- 2,7, 3,-9/*mean (0.0994152), correlation (0.550979)*/,
- -1,-6, -1,-1/*mean (0.10045), correlation (0.552714)*/,
- 9,5, 11,-2/*mean (0.100686), correlation (0.552594)*/,
- 11,-3, 12,-8/*mean (0.101091), correlation (0.532394)*/,
- 3,0, 3,5/*mean (0.101147), correlation (0.525576)*/,
- -1,4, 0,10/*mean (0.105263), correlation (0.531498)*/,
- 3,-6, 4,5/*mean (0.110785), correlation (0.540491)*/,
- -13,0, -10,5/*mean (0.112798), correlation (0.536582)*/,
- 5,8, 12,11/*mean (0.114181), correlation (0.555793)*/,
- 8,9, 9,-6/*mean (0.117431), correlation (0.553763)*/,
- 7,-4, 8,-12/*mean (0.118522), correlation (0.553452)*/,
- -10,4, -10,9/*mean (0.12094), correlation (0.554785)*/,
- 7,3, 12,4/*mean (0.122582), correlation (0.555825)*/,
- 9,-7, 10,-2/*mean (0.124978), correlation (0.549846)*/,
- 7,0, 12,-2/*mean (0.127002), correlation (0.537452)*/,
- -1,-6, 0,-11/*mean (0.127148), correlation (0.547401)*/
- };
- ORBextractor::ORBextractor(int _nfeatures, float _scaleFactor, int _nlevels,
- int _iniThFAST, int _minThFAST):
- nfeatures(_nfeatures), scaleFactor(_scaleFactor), nlevels(_nlevels),
- iniThFAST(_iniThFAST), minThFAST(_minThFAST)
- {
- mvScaleFactor.resize(nlevels);
- mvLevelSigma2.resize(nlevels);
- mvScaleFactor[0]=1.0f;
- mvLevelSigma2[0]=1.0f;
- for(int i=1; i<nlevels; i++)
- {
- mvScaleFactor[i]=mvScaleFactor[i-1]*scaleFactor;
- mvLevelSigma2[i]=mvScaleFactor[i]*mvScaleFactor[i];
- }
- mvInvScaleFactor.resize(nlevels);
- mvInvLevelSigma2.resize(nlevels);
- for(int i=0; i<nlevels; i++)
- {
- mvInvScaleFactor[i]=1.0f/mvScaleFactor[i];
- mvInvLevelSigma2[i]=1.0f/mvLevelSigma2[i];
- }
- mvImagePyramid.resize(nlevels);
- mnFeaturesPerLevel.resize(nlevels);
- float factor = 1.0f / scaleFactor;
- float nDesiredFeaturesPerScale = nfeatures*(1 - factor)/(1 - (float)pow((double)factor, (double)nlevels));
- int sumFeatures = 0;
- for( int level = 0; level < nlevels-1; level++ )
- {
- mnFeaturesPerLevel[level] = cvRound(nDesiredFeaturesPerScale);
- sumFeatures += mnFeaturesPerLevel[level];
- nDesiredFeaturesPerScale *= factor;
- }
- mnFeaturesPerLevel[nlevels-1] = std::max(nfeatures - sumFeatures, 0);
- const int npoints = 512;
- const Point* pattern0 = (const Point*)bit_pattern_31_;
- std::copy(pattern0, pattern0 + npoints, std::back_inserter(pattern));
- //This is for orientation
- // pre-compute the end of a row in a circular patch
- umax.resize(HALF_PATCH_SIZE + 1);
- int v, v0, vmax = cvFloor(HALF_PATCH_SIZE * sqrt(2.f) / 2 + 1);
- int vmin = cvCeil(HALF_PATCH_SIZE * sqrt(2.f) / 2);
- const double hp2 = HALF_PATCH_SIZE*HALF_PATCH_SIZE;
- for (v = 0; v <= vmax; ++v)
- umax[v] = cvRound(sqrt(hp2 - v * v));
- // Make sure we are symmetric
- for (v = HALF_PATCH_SIZE, v0 = 0; v >= vmin; --v)
- {
- while (umax[v0] == umax[v0 + 1])
- ++v0;
- umax[v] = v0;
- ++v0;
- }
- }
- static void computeOrientation(const Mat& image, vector<KeyPoint>& keypoints, const vector<int>& umax)
- {
- for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
- keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
- {
- keypoint->angle = IC_Angle(image, keypoint->pt, umax);
- }
- }
- void ExtractorNode::DivideNode(ExtractorNode &n1, ExtractorNode &n2, ExtractorNode &n3, ExtractorNode &n4)
- {
- const int halfX = ceil(static_cast<float>(UR.x-UL.x)/2);
- const int halfY = ceil(static_cast<float>(BR.y-UL.y)/2);
- //Define boundaries of childs
- n1.UL = UL;
- n1.UR = cv::Point2i(UL.x+halfX,UL.y);
- n1.BL = cv::Point2i(UL.x,UL.y+halfY);
- n1.BR = cv::Point2i(UL.x+halfX,UL.y+halfY);
- n1.vKeys.reserve(vKeys.size());
- n2.UL = n1.UR;
- n2.UR = UR;
- n2.BL = n1.BR;
- n2.BR = cv::Point2i(UR.x,UL.y+halfY);
- n2.vKeys.reserve(vKeys.size());
- n3.UL = n1.BL;
- n3.UR = n1.BR;
- n3.BL = BL;
- n3.BR = cv::Point2i(n1.BR.x,BL.y);
- n3.vKeys.reserve(vKeys.size());
- n4.UL = n3.UR;
- n4.UR = n2.BR;
- n4.BL = n3.BR;
- n4.BR = BR;
- n4.vKeys.reserve(vKeys.size());
- //Associate points to childs
- for(size_t i=0;i<vKeys.size();i++)
- {
- const cv::KeyPoint &kp = vKeys[i];
- if(kp.pt.x<n1.UR.x)
- {
- if(kp.pt.y<n1.BR.y)
- n1.vKeys.push_back(kp);
- else
- n3.vKeys.push_back(kp);
- }
- else if(kp.pt.y<n1.BR.y)
- n2.vKeys.push_back(kp);
- else
- n4.vKeys.push_back(kp);
- }
- if(n1.vKeys.size()==1)
- n1.bNoMore = true;
- if(n2.vKeys.size()==1)
- n2.bNoMore = true;
- if(n3.vKeys.size()==1)
- n3.bNoMore = true;
- if(n4.vKeys.size()==1)
- n4.bNoMore = true;
- }
- vector<cv::KeyPoint> ORBextractor::DistributeOctTree(const vector<cv::KeyPoint>& vToDistributeKeys, const int &minX,
- const int &maxX, const int &minY, const int &maxY, const int &N, const int &level)
- {
- // Compute how many initial nodes
- const int nIni = round(static_cast<float>(maxX-minX)/(maxY-minY));
- const float hX = static_cast<float>(maxX-minX)/nIni;
- list<ExtractorNode> lNodes;
- vector<ExtractorNode*> vpIniNodes;
- vpIniNodes.resize(nIni);
- for(int i=0; i<nIni; i++)
- {
- ExtractorNode ni;
- ni.UL = cv::Point2i(hX*static_cast<float>(i),0);
- ni.UR = cv::Point2i(hX*static_cast<float>(i+1),0);
- ni.BL = cv::Point2i(ni.UL.x,maxY-minY);
- ni.BR = cv::Point2i(ni.UR.x,maxY-minY);
- ni.vKeys.reserve(vToDistributeKeys.size());
- lNodes.push_back(ni);
- vpIniNodes[i] = &lNodes.back();
- }
- //Associate points to childs
- for(size_t i=0;i<vToDistributeKeys.size();i++)
- {
- const cv::KeyPoint &kp = vToDistributeKeys[i];
- vpIniNodes[kp.pt.x/hX]->vKeys.push_back(kp);
- }
- list<ExtractorNode>::iterator lit = lNodes.begin();
- while(lit!=lNodes.end())
- {
- if(lit->vKeys.size()==1)
- {
- lit->bNoMore=true;
- lit++;
- }
- else if(lit->vKeys.empty())
- lit = lNodes.erase(lit);
- else
- lit++;
- }
- bool bFinish = false;
- int iteration = 0;
- vector<pair<int,ExtractorNode*> > vSizeAndPointerToNode;
- vSizeAndPointerToNode.reserve(lNodes.size()*4);
- while(!bFinish)
- {
- iteration++;
- int prevSize = lNodes.size();
- lit = lNodes.begin();
- int nToExpand = 0;
- vSizeAndPointerToNode.clear();
- while(lit!=lNodes.end())
- {
- if(lit->bNoMore)
- {
- // If node only contains one point do not subdivide and continue
- lit++;
- continue;
- }
- else
- {
- // If more than one point, subdivide
- ExtractorNode n1,n2,n3,n4;
- lit->DivideNode(n1,n2,n3,n4);
- // Add childs if they contain points
- if(n1.vKeys.size()>0)
- {
- lNodes.push_front(n1);
- if(n1.vKeys.size()>1)
- {
- nToExpand++;
- vSizeAndPointerToNode.push_back(make_pair(n1.vKeys.size(),&lNodes.front()));
- lNodes.front().lit = lNodes.begin();
- }
- }
- if(n2.vKeys.size()>0)
- {
- lNodes.push_front(n2);
- if(n2.vKeys.size()>1)
- {
- nToExpand++;
- vSizeAndPointerToNode.push_back(make_pair(n2.vKeys.size(),&lNodes.front()));
- lNodes.front().lit = lNodes.begin();
- }
- }
- if(n3.vKeys.size()>0)
- {
- lNodes.push_front(n3);
- if(n3.vKeys.size()>1)
- {
- nToExpand++;
- vSizeAndPointerToNode.push_back(make_pair(n3.vKeys.size(),&lNodes.front()));
- lNodes.front().lit = lNodes.begin();
- }
- }
- if(n4.vKeys.size()>0)
- {
- lNodes.push_front(n4);
- if(n4.vKeys.size()>1)
- {
- nToExpand++;
- vSizeAndPointerToNode.push_back(make_pair(n4.vKeys.size(),&lNodes.front()));
- lNodes.front().lit = lNodes.begin();
- }
- }
- lit=lNodes.erase(lit);
- continue;
- }
- }
- // Finish if there are more nodes than required features
- // or all nodes contain just one point
- if((int)lNodes.size()>=N || (int)lNodes.size()==prevSize)
- {
- bFinish = true;
- }
- else if(((int)lNodes.size()+nToExpand*3)>N)
- {
- while(!bFinish)
- {
- prevSize = lNodes.size();
- vector<pair<int,ExtractorNode*> > vPrevSizeAndPointerToNode = vSizeAndPointerToNode;
- vSizeAndPointerToNode.clear();
- sort(vPrevSizeAndPointerToNode.begin(),vPrevSizeAndPointerToNode.end());
- for(int j=vPrevSizeAndPointerToNode.size()-1;j>=0;j--)
- {
- ExtractorNode n1,n2,n3,n4;
- vPrevSizeAndPointerToNode[j].second->DivideNode(n1,n2,n3,n4);
- // Add childs if they contain points
- if(n1.vKeys.size()>0)
- {
- lNodes.push_front(n1);
- if(n1.vKeys.size()>1)
- {
- vSizeAndPointerToNode.push_back(make_pair(n1.vKeys.size(),&lNodes.front()));
- lNodes.front().lit = lNodes.begin();
- }
- }
- if(n2.vKeys.size()>0)
- {
- lNodes.push_front(n2);
- if(n2.vKeys.size()>1)
- {
- vSizeAndPointerToNode.push_back(make_pair(n2.vKeys.size(),&lNodes.front()));
- lNodes.front().lit = lNodes.begin();
- }
- }
- if(n3.vKeys.size()>0)
- {
- lNodes.push_front(n3);
- if(n3.vKeys.size()>1)
- {
- vSizeAndPointerToNode.push_back(make_pair(n3.vKeys.size(),&lNodes.front()));
- lNodes.front().lit = lNodes.begin();
- }
- }
- if(n4.vKeys.size()>0)
- {
- lNodes.push_front(n4);
- if(n4.vKeys.size()>1)
- {
- vSizeAndPointerToNode.push_back(make_pair(n4.vKeys.size(),&lNodes.front()));
- lNodes.front().lit = lNodes.begin();
- }
- }
- lNodes.erase(vPrevSizeAndPointerToNode[j].second->lit);
- if((int)lNodes.size()>=N)
- break;
- }
- if((int)lNodes.size()>=N || (int)lNodes.size()==prevSize)
- bFinish = true;
- }
- }
- }
- // Retain the best point in each node
- vector<cv::KeyPoint> vResultKeys;
- vResultKeys.reserve(nfeatures);
- for(list<ExtractorNode>::iterator lit=lNodes.begin(); lit!=lNodes.end(); lit++)
- {
- vector<cv::KeyPoint> &vNodeKeys = lit->vKeys;
- cv::KeyPoint* pKP = &vNodeKeys[0];
- float maxResponse = pKP->response;
- for(size_t k=1;k<vNodeKeys.size();k++)
- {
- if(vNodeKeys[k].response>maxResponse)
- {
- pKP = &vNodeKeys[k];
- maxResponse = vNodeKeys[k].response;
- }
- }
- vResultKeys.push_back(*pKP);
- }
- return vResultKeys;
- }
- void ORBextractor::ComputeKeyPointsOctTree(vector<vector<KeyPoint> >& allKeypoints)
- {
- allKeypoints.resize(nlevels);
- const float W = 35;
- for (int level = 0; level < nlevels; ++level)
- {
- const int minBorderX = EDGE_THRESHOLD-3;
- const int minBorderY = minBorderX;
- const int maxBorderX = mvImagePyramid[level].cols-EDGE_THRESHOLD+3;
- const int maxBorderY = mvImagePyramid[level].rows-EDGE_THRESHOLD+3;
- vector<cv::KeyPoint> vToDistributeKeys;
- vToDistributeKeys.reserve(nfeatures*10);
- const float width = (maxBorderX-minBorderX);
- const float height = (maxBorderY-minBorderY);
- const int nCols = width/W;
- const int nRows = height/W;
- const int wCell = ceil(width/nCols);
- const int hCell = ceil(height/nRows);
- for(int i=0; i<nRows; i++)
- {
- const float iniY =minBorderY+i*hCell;
- float maxY = iniY+hCell+6;
- if(iniY>=maxBorderY-3)
- continue;
- if(maxY>maxBorderY)
- maxY = maxBorderY;
- for(int j=0; j<nCols; j++)
- {
- const float iniX =minBorderX+j*wCell;
- float maxX = iniX+wCell+6;
- if(iniX>=maxBorderX-6)
- continue;
- if(maxX>maxBorderX)
- maxX = maxBorderX;
- vector<cv::KeyPoint> vKeysCell;
- FAST(mvImagePyramid[level].rowRange(iniY,maxY).colRange(iniX,maxX),
- vKeysCell,iniThFAST,true);
- /*if(bRight && j <= 13){
- FAST(mvImagePyramid[level].rowRange(iniY,maxY).colRange(iniX,maxX),
- vKeysCell,10,true);
- }
- else if(!bRight && j >= 16){
- FAST(mvImagePyramid[level].rowRange(iniY,maxY).colRange(iniX,maxX),
- vKeysCell,10,true);
- }
- else{
- FAST(mvImagePyramid[level].rowRange(iniY,maxY).colRange(iniX,maxX),
- vKeysCell,iniThFAST,true);
- }*/
- if(vKeysCell.empty())
- {
- FAST(mvImagePyramid[level].rowRange(iniY,maxY).colRange(iniX,maxX),
- vKeysCell,minThFAST,true);
- /*if(bRight && j <= 13){
- FAST(mvImagePyramid[level].rowRange(iniY,maxY).colRange(iniX,maxX),
- vKeysCell,5,true);
- }
- else if(!bRight && j >= 16){
- FAST(mvImagePyramid[level].rowRange(iniY,maxY).colRange(iniX,maxX),
- vKeysCell,5,true);
- }
- else{
- FAST(mvImagePyramid[level].rowRange(iniY,maxY).colRange(iniX,maxX),
- vKeysCell,minThFAST,true);
- }*/
- }
- if(!vKeysCell.empty())
- {
- for(vector<cv::KeyPoint>::iterator vit=vKeysCell.begin(); vit!=vKeysCell.end();vit++)
- {
- (*vit).pt.x+=j*wCell;
- (*vit).pt.y+=i*hCell;
- vToDistributeKeys.push_back(*vit);
- }
- }
- }
- }
- vector<KeyPoint> & keypoints = allKeypoints[level];
- keypoints.reserve(nfeatures);
- keypoints = DistributeOctTree(vToDistributeKeys, minBorderX, maxBorderX,
- minBorderY, maxBorderY,mnFeaturesPerLevel[level], level);
- const int scaledPatchSize = PATCH_SIZE*mvScaleFactor[level];
- // Add border to coordinates and scale information
- const int nkps = keypoints.size();
- for(int i=0; i<nkps ; i++)
- {
- keypoints[i].pt.x+=minBorderX;
- keypoints[i].pt.y+=minBorderY;
- keypoints[i].octave=level;
- keypoints[i].size = scaledPatchSize;
- }
- }
- // compute orientations
- for (int level = 0; level < nlevels; ++level)
- computeOrientation(mvImagePyramid[level], allKeypoints[level], umax);
- }
- void ORBextractor::ComputeKeyPointsOld(std::vector<std::vector<KeyPoint> > &allKeypoints)
- {
- allKeypoints.resize(nlevels);
- float imageRatio = (float)mvImagePyramid[0].cols/mvImagePyramid[0].rows;
- for (int level = 0; level < nlevels; ++level)
- {
- const int nDesiredFeatures = mnFeaturesPerLevel[level];
- const int levelCols = sqrt((float)nDesiredFeatures/(5*imageRatio));
- const int levelRows = imageRatio*levelCols;
- const int minBorderX = EDGE_THRESHOLD;
- const int minBorderY = minBorderX;
- const int maxBorderX = mvImagePyramid[level].cols-EDGE_THRESHOLD;
- const int maxBorderY = mvImagePyramid[level].rows-EDGE_THRESHOLD;
- const int W = maxBorderX - minBorderX;
- const int H = maxBorderY - minBorderY;
- const int cellW = ceil((float)W/levelCols);
- const int cellH = ceil((float)H/levelRows);
- const int nCells = levelRows*levelCols;
- const int nfeaturesCell = ceil((float)nDesiredFeatures/nCells);
- vector<vector<vector<KeyPoint> > > cellKeyPoints(levelRows, vector<vector<KeyPoint> >(levelCols));
- vector<vector<int> > nToRetain(levelRows,vector<int>(levelCols,0));
- vector<vector<int> > nTotal(levelRows,vector<int>(levelCols,0));
- vector<vector<bool> > bNoMore(levelRows,vector<bool>(levelCols,false));
- vector<int> iniXCol(levelCols);
- vector<int> iniYRow(levelRows);
- int nNoMore = 0;
- int nToDistribute = 0;
- float hY = cellH + 6;
- for(int i=0; i<levelRows; i++)
- {
- const float iniY = minBorderY + i*cellH - 3;
- iniYRow[i] = iniY;
- if(i == levelRows-1)
- {
- hY = maxBorderY+3-iniY;
- if(hY<=0)
- continue;
- }
- float hX = cellW + 6;
- for(int j=0; j<levelCols; j++)
- {
- float iniX;
- if(i==0)
- {
- iniX = minBorderX + j*cellW - 3;
- iniXCol[j] = iniX;
- }
- else
- {
- iniX = iniXCol[j];
- }
- if(j == levelCols-1)
- {
- hX = maxBorderX+3-iniX;
- if(hX<=0)
- continue;
- }
- Mat cellImage = mvImagePyramid[level].rowRange(iniY,iniY+hY).colRange(iniX,iniX+hX);
- cellKeyPoints[i][j].reserve(nfeaturesCell*5);
- FAST(cellImage,cellKeyPoints[i][j],iniThFAST,true);
- if(cellKeyPoints[i][j].size()<=3)
- {
- cellKeyPoints[i][j].clear();
- FAST(cellImage,cellKeyPoints[i][j],minThFAST,true);
- }
- const int nKeys = cellKeyPoints[i][j].size();
- nTotal[i][j] = nKeys;
- if(nKeys>nfeaturesCell)
- {
- nToRetain[i][j] = nfeaturesCell;
- bNoMore[i][j] = false;
- }
- else
- {
- nToRetain[i][j] = nKeys;
- nToDistribute += nfeaturesCell-nKeys;
- bNoMore[i][j] = true;
- nNoMore++;
- }
- }
- }
- // Retain by score
- while(nToDistribute>0 && nNoMore<nCells)
- {
- int nNewFeaturesCell = nfeaturesCell + ceil((float)nToDistribute/(nCells-nNoMore));
- nToDistribute = 0;
- for(int i=0; i<levelRows; i++)
- {
- for(int j=0; j<levelCols; j++)
- {
- if(!bNoMore[i][j])
- {
- if(nTotal[i][j]>nNewFeaturesCell)
- {
- nToRetain[i][j] = nNewFeaturesCell;
- bNoMore[i][j] = false;
- }
- else
- {
- nToRetain[i][j] = nTotal[i][j];
- nToDistribute += nNewFeaturesCell-nTotal[i][j];
- bNoMore[i][j] = true;
- nNoMore++;
- }
- }
- }
- }
- }
- vector<KeyPoint> & keypoints = allKeypoints[level];
- keypoints.reserve(nDesiredFeatures*2);
- const int scaledPatchSize = PATCH_SIZE*mvScaleFactor[level];
- // Retain by score and transform coordinates
- for(int i=0; i<levelRows; i++)
- {
- for(int j=0; j<levelCols; j++)
- {
- vector<KeyPoint> &keysCell = cellKeyPoints[i][j];
- KeyPointsFilter::retainBest(keysCell,nToRetain[i][j]);
- if((int)keysCell.size()>nToRetain[i][j])
- keysCell.resize(nToRetain[i][j]);
- for(size_t k=0, kend=keysCell.size(); k<kend; k++)
- {
- keysCell[k].pt.x+=iniXCol[j];
- keysCell[k].pt.y+=iniYRow[i];
- keysCell[k].octave=level;
- keysCell[k].size = scaledPatchSize;
- keypoints.push_back(keysCell[k]);
- }
- }
- }
- if((int)keypoints.size()>nDesiredFeatures)
- {
- KeyPointsFilter::retainBest(keypoints,nDesiredFeatures);
- keypoints.resize(nDesiredFeatures);
- }
- }
- // and compute orientations
- for (int level = 0; level < nlevels; ++level)
- computeOrientation(mvImagePyramid[level], allKeypoints[level], umax);
- }
- static void computeDescriptors(const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors,
- const vector<Point>& pattern)
- {
- descriptors = Mat::zeros((int)keypoints.size(), 32, CV_8UC1);
- for (size_t i = 0; i < keypoints.size(); i++)
- computeOrbDescriptor(keypoints[i], image, &pattern[0], descriptors.ptr((int)i));
- }
- int ORBextractor::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& _keypoints,
- OutputArray _descriptors, std::vector<int> &vLappingArea)
- {
- //cout << "[ORBextractor]: Max Features: " << nfeatures << endl;
- if(_image.empty())
- return -1;
- Mat image = _image.getMat();
- assert(image.type() == CV_8UC1 );
- // Pre-compute the scale pyramid
- ComputePyramid(image);
- vector < vector<KeyPoint> > allKeypoints;
- ComputeKeyPointsOctTree(allKeypoints);
- //ComputeKeyPointsOld(allKeypoints);
- Mat descriptors;
- int nkeypoints = 0;
- for (int level = 0; level < nlevels; ++level)
- nkeypoints += (int)allKeypoints[level].size();
- if( nkeypoints == 0 )
- _descriptors.release();
- else
- {
- _descriptors.create(nkeypoints, 32, CV_8U);
- descriptors = _descriptors.getMat();
- }
- //_keypoints.clear();
- //_keypoints.reserve(nkeypoints);
- _keypoints = vector<cv::KeyPoint>(nkeypoints);
- int offset = 0;
- //Modified for speeding up stereo fisheye matching
- int monoIndex = 0, stereoIndex = nkeypoints-1;
- for (int level = 0; level < nlevels; ++level)
- {
- vector<KeyPoint>& keypoints = allKeypoints[level];
- int nkeypointsLevel = (int)keypoints.size();
- if(nkeypointsLevel==0)
- continue;
- // preprocess the resized image
- Mat workingMat = mvImagePyramid[level].clone();
- GaussianBlur(workingMat, workingMat, Size(7, 7), 2, 2, BORDER_REFLECT_101);
- // Compute the descriptors
- //Mat desc = descriptors.rowRange(offset, offset + nkeypointsLevel);
- Mat desc = cv::Mat(nkeypointsLevel, 32, CV_8U);
- computeDescriptors(workingMat, keypoints, desc, pattern);
- offset += nkeypointsLevel;
- float scale = mvScaleFactor[level]; //getScale(level, firstLevel, scaleFactor);
- int i = 0;
- for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
- keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint){
- // Scale keypoint coordinates
- if (level != 0){
- keypoint->pt *= scale;
- }
- if(keypoint->pt.x >= vLappingArea[0] && keypoint->pt.x <= vLappingArea[1]){
- _keypoints.at(stereoIndex) = (*keypoint);
- desc.row(i).copyTo(descriptors.row(stereoIndex));
- stereoIndex--;
- }
- else{
- _keypoints.at(monoIndex) = (*keypoint);
- desc.row(i).copyTo(descriptors.row(monoIndex));
- monoIndex++;
- }
- i++;
- }
- }
- //cout << "[ORBextractor]: extracted " << _keypoints.size() << " KeyPoints" << endl;
- return monoIndex;
- }
- void ORBextractor::ComputePyramid(cv::Mat image)
- {
- for (int level = 0; level < nlevels; ++level)
- {
- float scale = mvInvScaleFactor[level];
- Size sz(cvRound((float)image.cols*scale), cvRound((float)image.rows*scale));
- Size wholeSize(sz.width + EDGE_THRESHOLD*2, sz.height + EDGE_THRESHOLD*2);
- Mat temp(wholeSize, image.type()), masktemp;
- mvImagePyramid[level] = temp(Rect(EDGE_THRESHOLD, EDGE_THRESHOLD, sz.width, sz.height));
- // Compute the resized image
- if( level != 0 )
- {
- resize(mvImagePyramid[level-1], mvImagePyramid[level], sz, 0, 0, INTER_LINEAR);
- copyMakeBorder(mvImagePyramid[level], temp, EDGE_THRESHOLD, EDGE_THRESHOLD, EDGE_THRESHOLD, EDGE_THRESHOLD,
- BORDER_REFLECT_101+BORDER_ISOLATED);
- }
- else
- {
- copyMakeBorder(image, temp, EDGE_THRESHOLD, EDGE_THRESHOLD, EDGE_THRESHOLD, EDGE_THRESHOLD,
- BORDER_REFLECT_101);
- }
- }
- }
- } //namespace ORB_SLAM
|