123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287 |
- #include <iostream>
- #include <sophus/interpolate.hpp>
- #include <sophus/so3.hpp>
- #include "tests.hpp"
- // Explicit instantiate all class templates so that all member methods
- // get compiled and for code coverage analysis.
- namespace Eigen {
- template class Map<Sophus::SO3<double>>;
- template class Map<Sophus::SO3<double> const>;
- } // namespace Eigen
- namespace Sophus {
- template class SO3<double, Eigen::AutoAlign>;
- template class SO3<float, Eigen::DontAlign>;
- #if SOPHUS_CERES
- template class SO3<ceres::Jet<double, 3>>;
- #endif
- template <class Scalar>
- class Tests {
- public:
- using SO3Type = SO3<Scalar>;
- using Point = typename SO3<Scalar>::Point;
- using Tangent = typename SO3<Scalar>::Tangent;
- Scalar const kPi = Constants<Scalar>::pi();
- Tests() {
- so3_vec_.push_back(SO3Type(Eigen::Quaternion<Scalar>(
- Scalar(0.1e-11), Scalar(0.), Scalar(1.), Scalar(0.))));
- so3_vec_.push_back(SO3Type(Eigen::Quaternion<Scalar>(
- Scalar(-1), Scalar(0.00001), Scalar(0.0), Scalar(0.0))));
- so3_vec_.push_back(
- SO3Type::exp(Point(Scalar(0.2), Scalar(0.5), Scalar(0.0))));
- so3_vec_.push_back(
- SO3Type::exp(Point(Scalar(0.2), Scalar(0.5), Scalar(-1.0))));
- so3_vec_.push_back(SO3Type::exp(Point(Scalar(0.), Scalar(0.), Scalar(0.))));
- so3_vec_.push_back(
- SO3Type::exp(Point(Scalar(0.), Scalar(0.), Scalar(0.00001))));
- so3_vec_.push_back(SO3Type::exp(Point(kPi, Scalar(0), Scalar(0))));
- so3_vec_.push_back(
- SO3Type::exp(Point(Scalar(0.2), Scalar(0.5), Scalar(0.0))) *
- SO3Type::exp(Point(kPi, Scalar(0), Scalar(0))) *
- SO3Type::exp(Point(Scalar(-0.2), Scalar(-0.5), Scalar(-0.0))));
- so3_vec_.push_back(
- SO3Type::exp(Point(Scalar(0.3), Scalar(0.5), Scalar(0.1))) *
- SO3Type::exp(Point(kPi, Scalar(0), Scalar(0))) *
- SO3Type::exp(Point(Scalar(-0.3), Scalar(-0.5), Scalar(-0.1))));
- tangent_vec_.push_back(Tangent(Scalar(0), Scalar(0), Scalar(0)));
- tangent_vec_.push_back(Tangent(Scalar(1), Scalar(0), Scalar(0)));
- tangent_vec_.push_back(Tangent(Scalar(0), Scalar(1), Scalar(0)));
- tangent_vec_.push_back(
- Tangent(Scalar(kPi / 2.), Scalar(kPi / 2.), Scalar(0)));
- tangent_vec_.push_back(Tangent(Scalar(-1), Scalar(1), Scalar(0)));
- tangent_vec_.push_back(Tangent(Scalar(20), Scalar(-1), Scalar(0)));
- tangent_vec_.push_back(Tangent(Scalar(30), Scalar(5), Scalar(-1)));
- point_vec_.push_back(Point(Scalar(1), Scalar(2), Scalar(4)));
- point_vec_.push_back(Point(Scalar(1), Scalar(-3), Scalar(0.5)));
- }
- void runAll() {
- bool passed = testLieProperties();
- passed &= testUnity();
- passed &= testRawDataAcces();
- passed &= testConstructors();
- passed &= testSampleUniformSymmetry();
- passed &= testFit();
- processTestResult(passed);
- }
- private:
- bool testLieProperties() {
- LieGroupTests<SO3Type> tests(so3_vec_, tangent_vec_, point_vec_);
- return tests.doAllTestsPass();
- }
- bool testUnity() {
- bool passed = true;
- // Test that the complex number magnitude stays close to one.
- SO3Type current_q;
- for (size_t i = 0; i < 1000; ++i) {
- for (SO3Type const& q : so3_vec_) {
- current_q *= q;
- }
- }
- SOPHUS_TEST_APPROX(passed, current_q.unit_quaternion().norm(), Scalar(1),
- Constants<Scalar>::epsilon(), "Magnitude drift");
- return passed;
- }
- bool testRawDataAcces() {
- bool passed = true;
- Eigen::Matrix<Scalar, 4, 1> raw = {Scalar(0), Scalar(1), Scalar(0),
- Scalar(0)};
- Eigen::Map<SO3Type const> map_of_const_so3(raw.data());
- SOPHUS_TEST_APPROX(passed,
- map_of_const_so3.unit_quaternion().coeffs().eval(), raw,
- Constants<Scalar>::epsilon());
- SOPHUS_TEST_EQUAL(
- passed, map_of_const_so3.unit_quaternion().coeffs().data(), raw.data());
- Eigen::Map<SO3Type const> const_shallow_copy = map_of_const_so3;
- SOPHUS_TEST_EQUAL(passed,
- const_shallow_copy.unit_quaternion().coeffs().eval(),
- map_of_const_so3.unit_quaternion().coeffs().eval());
- Eigen::Matrix<Scalar, 4, 1> raw2 = {Scalar(1), Scalar(0), Scalar(0),
- Scalar(0)};
- Eigen::Map<SO3Type> map_of_so3(raw.data());
- Eigen::Quaternion<Scalar> quat;
- quat.coeffs() = raw2;
- map_of_so3.setQuaternion(quat);
- SOPHUS_TEST_APPROX(passed, map_of_so3.unit_quaternion().coeffs().eval(),
- raw2, Constants<Scalar>::epsilon());
- SOPHUS_TEST_EQUAL(passed, map_of_so3.unit_quaternion().coeffs().data(),
- raw.data());
- SOPHUS_TEST_NEQ(passed, map_of_so3.unit_quaternion().coeffs().data(),
- quat.coeffs().data());
- Eigen::Map<SO3Type> shallow_copy = map_of_so3;
- SOPHUS_TEST_EQUAL(passed, shallow_copy.unit_quaternion().coeffs().eval(),
- map_of_so3.unit_quaternion().coeffs().eval());
- SO3Type const const_so3(quat);
- for (int i = 0; i < 4; ++i) {
- SOPHUS_TEST_EQUAL(passed, const_so3.data()[i], raw2.data()[i]);
- }
- SO3Type so3(quat);
- for (int i = 0; i < 4; ++i) {
- so3.data()[i] = raw[i];
- }
- for (int i = 0; i < 4; ++i) {
- SOPHUS_TEST_EQUAL(passed, so3.data()[i], raw.data()[i]);
- }
- SOPHUS_TEST_EQUAL(
- passed, SO3Type::rotX(Scalar(0.2)).matrix(),
- SO3Type::exp(Point(Scalar(0.2), Scalar(0), Scalar(0))).matrix());
- SOPHUS_TEST_EQUAL(
- passed, SO3Type::rotY(Scalar(-0.2)).matrix(),
- SO3Type::exp(Point(Scalar(0), Scalar(-0.2), Scalar(0))).matrix());
- SOPHUS_TEST_EQUAL(
- passed, SO3Type::rotZ(Scalar(1.1)).matrix(),
- SO3Type::exp(Point(Scalar(0), Scalar(0), Scalar(1.1))).matrix());
- Vector4<Scalar> data1(Scalar{1}, Scalar{0}, Scalar{0}, Scalar{0});
- Vector4<Scalar> data2(Scalar{0}, Scalar{1}, Scalar{0}, Scalar{0});
- Eigen::Map<SO3Type> map1(data1.data()), map2(data2.data());
- // map -> map assignment
- map2 = map1;
- SOPHUS_TEST_EQUAL(passed, map1.matrix(), map2.matrix());
- // map -> type assignment
- SO3Type copy;
- copy = map1;
- SOPHUS_TEST_EQUAL(passed, map1.matrix(), copy.matrix());
- // type -> map assignment
- copy = SO3Type::rotZ(Scalar(0.5));
- map1 = copy;
- SOPHUS_TEST_EQUAL(passed, map1.matrix(), copy.matrix());
- return passed;
- }
- bool testConstructors() {
- bool passed = true;
- Matrix3<Scalar> R = so3_vec_.front().matrix();
- SO3Type so3(R);
- SOPHUS_TEST_APPROX(passed, R, so3.matrix(), Constants<Scalar>::epsilon());
- return passed;
- }
- template <class S = Scalar>
- enable_if_t<std::is_floating_point<S>::value, bool> testSampleUniformSymmetry() {
- bool passed = true;
- std::default_random_engine generator(0);
- // A non-rigorous test for checking that our sampleUniform() function is
- // giving us symmetric results
- //
- // We (a) split the output space in half, (b) apply a series of random
- // rotations to a point, (c) check which half of the output space each
- // transformed point ends up, and then (d) apply a standard "coin toss"
- // chi-square test
- for (size_t trial = 0; trial < 5; trial++) {
- std::normal_distribution<Scalar> normal(0, 10);
- // Pick a random plane to split the output space by
- Point plane_normal(normal(generator), normal(generator),
- normal(generator));
- plane_normal /= plane_normal.norm();
- // Pick a random point to be rotated
- Point input_point(normal(generator), normal(generator),
- normal(generator));
- input_point /= input_point.norm();
- // Randomly rotate points and track # that land on each side of plane
- size_t positive_count = 0;
- size_t negative_count = 0;
- size_t samples = 5000;
- for (size_t i = 0; i < samples; ++i) {
- SO3Type R = SO3Type::sampleUniform(generator);
- if (plane_normal.dot(R * input_point) > 0)
- positive_count++;
- else
- negative_count++;
- }
- // Chi-square computation, compare against critical value (p=0.01)
- double expected_count = static_cast<double>(samples) / 2.0;
- double chi_square =
- pow(positive_count - expected_count, 2.0) / expected_count +
- pow(negative_count - expected_count, 2.0) / expected_count;
- SOPHUS_TEST(passed, chi_square < 6.635);
- }
- return passed;
- }
- template <class S = Scalar>
- enable_if_t<!std::is_floating_point<S>::value, bool> testSampleUniformSymmetry() {
- return true;
- }
- template <class S = Scalar>
- enable_if_t<std::is_floating_point<S>::value, bool> testFit() {
- bool passed = true;
- for (int i = 0; i < 100; ++i) {
- Matrix3<Scalar> R = Matrix3<Scalar>::Random();
- SO3Type so3 = SO3Type::fitToSO3(R);
- SO3Type so3_2 = SO3Type::fitToSO3(so3.matrix());
- SOPHUS_TEST_APPROX(passed, so3.matrix(), so3_2.matrix(),
- Constants<Scalar>::epsilon());
- }
- for (Scalar const angle :
- {Scalar(0.0), Scalar(0.1), Scalar(0.3), Scalar(-0.7)}) {
- SOPHUS_TEST_APPROX(passed, SO3Type::rotX(angle).angleX(), angle,
- Constants<Scalar>::epsilon());
- SOPHUS_TEST_APPROX(passed, SO3Type::rotY(angle).angleY(), angle,
- Constants<Scalar>::epsilon());
- SOPHUS_TEST_APPROX(passed, SO3Type::rotZ(angle).angleZ(), angle,
- Constants<Scalar>::epsilon());
- }
- return passed;
- }
- template <class S = Scalar>
- enable_if_t<!std::is_floating_point<S>::value, bool> testFit() {
- return true;
- }
- std::vector<SO3Type, Eigen::aligned_allocator<SO3Type>> so3_vec_;
- std::vector<Tangent, Eigen::aligned_allocator<Tangent>> tangent_vec_;
- std::vector<Point, Eigen::aligned_allocator<Point>> point_vec_;
- };
- int test_so3() {
- using std::cerr;
- using std::endl;
- cerr << "Test SO3" << endl << endl;
- cerr << "Double tests: " << endl;
- Tests<double>().runAll();
- cerr << "Float tests: " << endl;
- Tests<float>().runAll();
- #if SOPHUS_CERES
- cerr << "ceres::Jet<double, 3> tests: " << endl;
- Tests<ceres::Jet<double, 3>>().runAll();
- #endif
- return 0;
- }
- } // namespace Sophus
- int main() { return Sophus::test_so3(); }
|