test_so3.cpp 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287
  1. #include <iostream>
  2. #include <sophus/interpolate.hpp>
  3. #include <sophus/so3.hpp>
  4. #include "tests.hpp"
  5. // Explicit instantiate all class templates so that all member methods
  6. // get compiled and for code coverage analysis.
  7. namespace Eigen {
  8. template class Map<Sophus::SO3<double>>;
  9. template class Map<Sophus::SO3<double> const>;
  10. } // namespace Eigen
  11. namespace Sophus {
  12. template class SO3<double, Eigen::AutoAlign>;
  13. template class SO3<float, Eigen::DontAlign>;
  14. #if SOPHUS_CERES
  15. template class SO3<ceres::Jet<double, 3>>;
  16. #endif
  17. template <class Scalar>
  18. class Tests {
  19. public:
  20. using SO3Type = SO3<Scalar>;
  21. using Point = typename SO3<Scalar>::Point;
  22. using Tangent = typename SO3<Scalar>::Tangent;
  23. Scalar const kPi = Constants<Scalar>::pi();
  24. Tests() {
  25. so3_vec_.push_back(SO3Type(Eigen::Quaternion<Scalar>(
  26. Scalar(0.1e-11), Scalar(0.), Scalar(1.), Scalar(0.))));
  27. so3_vec_.push_back(SO3Type(Eigen::Quaternion<Scalar>(
  28. Scalar(-1), Scalar(0.00001), Scalar(0.0), Scalar(0.0))));
  29. so3_vec_.push_back(
  30. SO3Type::exp(Point(Scalar(0.2), Scalar(0.5), Scalar(0.0))));
  31. so3_vec_.push_back(
  32. SO3Type::exp(Point(Scalar(0.2), Scalar(0.5), Scalar(-1.0))));
  33. so3_vec_.push_back(SO3Type::exp(Point(Scalar(0.), Scalar(0.), Scalar(0.))));
  34. so3_vec_.push_back(
  35. SO3Type::exp(Point(Scalar(0.), Scalar(0.), Scalar(0.00001))));
  36. so3_vec_.push_back(SO3Type::exp(Point(kPi, Scalar(0), Scalar(0))));
  37. so3_vec_.push_back(
  38. SO3Type::exp(Point(Scalar(0.2), Scalar(0.5), Scalar(0.0))) *
  39. SO3Type::exp(Point(kPi, Scalar(0), Scalar(0))) *
  40. SO3Type::exp(Point(Scalar(-0.2), Scalar(-0.5), Scalar(-0.0))));
  41. so3_vec_.push_back(
  42. SO3Type::exp(Point(Scalar(0.3), Scalar(0.5), Scalar(0.1))) *
  43. SO3Type::exp(Point(kPi, Scalar(0), Scalar(0))) *
  44. SO3Type::exp(Point(Scalar(-0.3), Scalar(-0.5), Scalar(-0.1))));
  45. tangent_vec_.push_back(Tangent(Scalar(0), Scalar(0), Scalar(0)));
  46. tangent_vec_.push_back(Tangent(Scalar(1), Scalar(0), Scalar(0)));
  47. tangent_vec_.push_back(Tangent(Scalar(0), Scalar(1), Scalar(0)));
  48. tangent_vec_.push_back(
  49. Tangent(Scalar(kPi / 2.), Scalar(kPi / 2.), Scalar(0)));
  50. tangent_vec_.push_back(Tangent(Scalar(-1), Scalar(1), Scalar(0)));
  51. tangent_vec_.push_back(Tangent(Scalar(20), Scalar(-1), Scalar(0)));
  52. tangent_vec_.push_back(Tangent(Scalar(30), Scalar(5), Scalar(-1)));
  53. point_vec_.push_back(Point(Scalar(1), Scalar(2), Scalar(4)));
  54. point_vec_.push_back(Point(Scalar(1), Scalar(-3), Scalar(0.5)));
  55. }
  56. void runAll() {
  57. bool passed = testLieProperties();
  58. passed &= testUnity();
  59. passed &= testRawDataAcces();
  60. passed &= testConstructors();
  61. passed &= testSampleUniformSymmetry();
  62. passed &= testFit();
  63. processTestResult(passed);
  64. }
  65. private:
  66. bool testLieProperties() {
  67. LieGroupTests<SO3Type> tests(so3_vec_, tangent_vec_, point_vec_);
  68. return tests.doAllTestsPass();
  69. }
  70. bool testUnity() {
  71. bool passed = true;
  72. // Test that the complex number magnitude stays close to one.
  73. SO3Type current_q;
  74. for (size_t i = 0; i < 1000; ++i) {
  75. for (SO3Type const& q : so3_vec_) {
  76. current_q *= q;
  77. }
  78. }
  79. SOPHUS_TEST_APPROX(passed, current_q.unit_quaternion().norm(), Scalar(1),
  80. Constants<Scalar>::epsilon(), "Magnitude drift");
  81. return passed;
  82. }
  83. bool testRawDataAcces() {
  84. bool passed = true;
  85. Eigen::Matrix<Scalar, 4, 1> raw = {Scalar(0), Scalar(1), Scalar(0),
  86. Scalar(0)};
  87. Eigen::Map<SO3Type const> map_of_const_so3(raw.data());
  88. SOPHUS_TEST_APPROX(passed,
  89. map_of_const_so3.unit_quaternion().coeffs().eval(), raw,
  90. Constants<Scalar>::epsilon());
  91. SOPHUS_TEST_EQUAL(
  92. passed, map_of_const_so3.unit_quaternion().coeffs().data(), raw.data());
  93. Eigen::Map<SO3Type const> const_shallow_copy = map_of_const_so3;
  94. SOPHUS_TEST_EQUAL(passed,
  95. const_shallow_copy.unit_quaternion().coeffs().eval(),
  96. map_of_const_so3.unit_quaternion().coeffs().eval());
  97. Eigen::Matrix<Scalar, 4, 1> raw2 = {Scalar(1), Scalar(0), Scalar(0),
  98. Scalar(0)};
  99. Eigen::Map<SO3Type> map_of_so3(raw.data());
  100. Eigen::Quaternion<Scalar> quat;
  101. quat.coeffs() = raw2;
  102. map_of_so3.setQuaternion(quat);
  103. SOPHUS_TEST_APPROX(passed, map_of_so3.unit_quaternion().coeffs().eval(),
  104. raw2, Constants<Scalar>::epsilon());
  105. SOPHUS_TEST_EQUAL(passed, map_of_so3.unit_quaternion().coeffs().data(),
  106. raw.data());
  107. SOPHUS_TEST_NEQ(passed, map_of_so3.unit_quaternion().coeffs().data(),
  108. quat.coeffs().data());
  109. Eigen::Map<SO3Type> shallow_copy = map_of_so3;
  110. SOPHUS_TEST_EQUAL(passed, shallow_copy.unit_quaternion().coeffs().eval(),
  111. map_of_so3.unit_quaternion().coeffs().eval());
  112. SO3Type const const_so3(quat);
  113. for (int i = 0; i < 4; ++i) {
  114. SOPHUS_TEST_EQUAL(passed, const_so3.data()[i], raw2.data()[i]);
  115. }
  116. SO3Type so3(quat);
  117. for (int i = 0; i < 4; ++i) {
  118. so3.data()[i] = raw[i];
  119. }
  120. for (int i = 0; i < 4; ++i) {
  121. SOPHUS_TEST_EQUAL(passed, so3.data()[i], raw.data()[i]);
  122. }
  123. SOPHUS_TEST_EQUAL(
  124. passed, SO3Type::rotX(Scalar(0.2)).matrix(),
  125. SO3Type::exp(Point(Scalar(0.2), Scalar(0), Scalar(0))).matrix());
  126. SOPHUS_TEST_EQUAL(
  127. passed, SO3Type::rotY(Scalar(-0.2)).matrix(),
  128. SO3Type::exp(Point(Scalar(0), Scalar(-0.2), Scalar(0))).matrix());
  129. SOPHUS_TEST_EQUAL(
  130. passed, SO3Type::rotZ(Scalar(1.1)).matrix(),
  131. SO3Type::exp(Point(Scalar(0), Scalar(0), Scalar(1.1))).matrix());
  132. Vector4<Scalar> data1(Scalar{1}, Scalar{0}, Scalar{0}, Scalar{0});
  133. Vector4<Scalar> data2(Scalar{0}, Scalar{1}, Scalar{0}, Scalar{0});
  134. Eigen::Map<SO3Type> map1(data1.data()), map2(data2.data());
  135. // map -> map assignment
  136. map2 = map1;
  137. SOPHUS_TEST_EQUAL(passed, map1.matrix(), map2.matrix());
  138. // map -> type assignment
  139. SO3Type copy;
  140. copy = map1;
  141. SOPHUS_TEST_EQUAL(passed, map1.matrix(), copy.matrix());
  142. // type -> map assignment
  143. copy = SO3Type::rotZ(Scalar(0.5));
  144. map1 = copy;
  145. SOPHUS_TEST_EQUAL(passed, map1.matrix(), copy.matrix());
  146. return passed;
  147. }
  148. bool testConstructors() {
  149. bool passed = true;
  150. Matrix3<Scalar> R = so3_vec_.front().matrix();
  151. SO3Type so3(R);
  152. SOPHUS_TEST_APPROX(passed, R, so3.matrix(), Constants<Scalar>::epsilon());
  153. return passed;
  154. }
  155. template <class S = Scalar>
  156. enable_if_t<std::is_floating_point<S>::value, bool> testSampleUniformSymmetry() {
  157. bool passed = true;
  158. std::default_random_engine generator(0);
  159. // A non-rigorous test for checking that our sampleUniform() function is
  160. // giving us symmetric results
  161. //
  162. // We (a) split the output space in half, (b) apply a series of random
  163. // rotations to a point, (c) check which half of the output space each
  164. // transformed point ends up, and then (d) apply a standard "coin toss"
  165. // chi-square test
  166. for (size_t trial = 0; trial < 5; trial++) {
  167. std::normal_distribution<Scalar> normal(0, 10);
  168. // Pick a random plane to split the output space by
  169. Point plane_normal(normal(generator), normal(generator),
  170. normal(generator));
  171. plane_normal /= plane_normal.norm();
  172. // Pick a random point to be rotated
  173. Point input_point(normal(generator), normal(generator),
  174. normal(generator));
  175. input_point /= input_point.norm();
  176. // Randomly rotate points and track # that land on each side of plane
  177. size_t positive_count = 0;
  178. size_t negative_count = 0;
  179. size_t samples = 5000;
  180. for (size_t i = 0; i < samples; ++i) {
  181. SO3Type R = SO3Type::sampleUniform(generator);
  182. if (plane_normal.dot(R * input_point) > 0)
  183. positive_count++;
  184. else
  185. negative_count++;
  186. }
  187. // Chi-square computation, compare against critical value (p=0.01)
  188. double expected_count = static_cast<double>(samples) / 2.0;
  189. double chi_square =
  190. pow(positive_count - expected_count, 2.0) / expected_count +
  191. pow(negative_count - expected_count, 2.0) / expected_count;
  192. SOPHUS_TEST(passed, chi_square < 6.635);
  193. }
  194. return passed;
  195. }
  196. template <class S = Scalar>
  197. enable_if_t<!std::is_floating_point<S>::value, bool> testSampleUniformSymmetry() {
  198. return true;
  199. }
  200. template <class S = Scalar>
  201. enable_if_t<std::is_floating_point<S>::value, bool> testFit() {
  202. bool passed = true;
  203. for (int i = 0; i < 100; ++i) {
  204. Matrix3<Scalar> R = Matrix3<Scalar>::Random();
  205. SO3Type so3 = SO3Type::fitToSO3(R);
  206. SO3Type so3_2 = SO3Type::fitToSO3(so3.matrix());
  207. SOPHUS_TEST_APPROX(passed, so3.matrix(), so3_2.matrix(),
  208. Constants<Scalar>::epsilon());
  209. }
  210. for (Scalar const angle :
  211. {Scalar(0.0), Scalar(0.1), Scalar(0.3), Scalar(-0.7)}) {
  212. SOPHUS_TEST_APPROX(passed, SO3Type::rotX(angle).angleX(), angle,
  213. Constants<Scalar>::epsilon());
  214. SOPHUS_TEST_APPROX(passed, SO3Type::rotY(angle).angleY(), angle,
  215. Constants<Scalar>::epsilon());
  216. SOPHUS_TEST_APPROX(passed, SO3Type::rotZ(angle).angleZ(), angle,
  217. Constants<Scalar>::epsilon());
  218. }
  219. return passed;
  220. }
  221. template <class S = Scalar>
  222. enable_if_t<!std::is_floating_point<S>::value, bool> testFit() {
  223. return true;
  224. }
  225. std::vector<SO3Type, Eigen::aligned_allocator<SO3Type>> so3_vec_;
  226. std::vector<Tangent, Eigen::aligned_allocator<Tangent>> tangent_vec_;
  227. std::vector<Point, Eigen::aligned_allocator<Point>> point_vec_;
  228. };
  229. int test_so3() {
  230. using std::cerr;
  231. using std::endl;
  232. cerr << "Test SO3" << endl << endl;
  233. cerr << "Double tests: " << endl;
  234. Tests<double>().runAll();
  235. cerr << "Float tests: " << endl;
  236. Tests<float>().runAll();
  237. #if SOPHUS_CERES
  238. cerr << "ceres::Jet<double, 3> tests: " << endl;
  239. Tests<ceres::Jet<double, 3>>().runAll();
  240. #endif
  241. return 0;
  242. }
  243. } // namespace Sophus
  244. int main() { return Sophus::test_so3(); }