123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283 |
- #include <iostream>
- #include <sophus/rxso3.hpp>
- #include "tests.hpp"
- // Explicit instantiate all class templates so that all member methods
- // get compiled and for code coverage analysis.
- namespace Eigen {
- template class Map<Sophus::RxSO3<double>>;
- template class Map<Sophus::RxSO3<double> const>;
- } // namespace Eigen
- namespace Sophus {
- template class RxSO3<double, Eigen::AutoAlign>;
- template class RxSO3<float, Eigen::DontAlign>;
- #if SOPHUS_CERES
- template class RxSO3<ceres::Jet<double, 3>>;
- #endif
- template <class Scalar_>
- class Tests {
- public:
- using Scalar = Scalar_;
- using SO3Type = SO3<Scalar>;
- using RxSO3Type = RxSO3<Scalar>;
- using RotationMatrixType = typename SO3<Scalar>::Transformation;
- using Point = typename RxSO3<Scalar>::Point;
- using Tangent = typename RxSO3<Scalar>::Tangent;
- Scalar const kPi = Constants<Scalar>::pi();
- Tests() {
- rxso3_vec_.push_back(RxSO3Type::exp(
- Tangent(Scalar(0.2), Scalar(0.5), Scalar(0.0), Scalar(1.))));
- rxso3_vec_.push_back(RxSO3Type::exp(
- Tangent(Scalar(0.2), Scalar(0.5), Scalar(-1.0), Scalar(1.1))));
- rxso3_vec_.push_back(RxSO3Type::exp(
- Tangent(Scalar(0.), Scalar(0.), Scalar(0.), Scalar(1.1))));
- rxso3_vec_.push_back(RxSO3Type::exp(
- Tangent(Scalar(0.), Scalar(0.), Scalar(0.00001), Scalar(0.))));
- rxso3_vec_.push_back(RxSO3Type::exp(
- Tangent(Scalar(0.), Scalar(0.), Scalar(0.00001), Scalar(0.00001))));
- rxso3_vec_.push_back(RxSO3Type::exp(
- Tangent(Scalar(0.), Scalar(0.), Scalar(0.00001), Scalar(0))));
- rxso3_vec_.push_back(
- RxSO3Type::exp(Tangent(kPi, Scalar(0), Scalar(0), Scalar(0.9))));
- rxso3_vec_.push_back(
- RxSO3Type::exp(
- Tangent(Scalar(0.2), Scalar(-0.5), Scalar(0), Scalar(0))) *
- RxSO3Type::exp(Tangent(kPi, Scalar(0), Scalar(0), Scalar(0))) *
- RxSO3Type::exp(
- Tangent(-Scalar(0.2), Scalar(-0.5), Scalar(0), Scalar(0))));
- rxso3_vec_.push_back(
- RxSO3Type::exp(
- Tangent(Scalar(0.3), Scalar(0.5), Scalar(0.1), Scalar(0))) *
- RxSO3Type::exp(Tangent(kPi, Scalar(0), Scalar(0), Scalar(0))) *
- RxSO3Type::exp(
- Tangent(Scalar(-0.3), Scalar(-0.5), Scalar(-0.1), Scalar(0))));
- Tangent tmp;
- tmp << Scalar(0), Scalar(0), Scalar(0), Scalar(0);
- tangent_vec_.push_back(tmp);
- tmp << Scalar(1), Scalar(0), Scalar(0), Scalar(0);
- tangent_vec_.push_back(tmp);
- tmp << Scalar(1), Scalar(0), Scalar(0), Scalar(0.1);
- tangent_vec_.push_back(tmp);
- tmp << Scalar(0), Scalar(1), Scalar(0), Scalar(0.1);
- tangent_vec_.push_back(tmp);
- tmp << Scalar(0), Scalar(0), Scalar(1), Scalar(-0.1);
- tangent_vec_.push_back(tmp);
- tmp << Scalar(-1), Scalar(1), Scalar(0), Scalar(-0.1);
- tangent_vec_.push_back(tmp);
- tmp << Scalar(20), Scalar(-1), Scalar(0), Scalar(2);
- tangent_vec_.push_back(tmp);
- point_vec_.push_back(Point(Scalar(1), Scalar(2), Scalar(4)));
- point_vec_.push_back(Point(Scalar(1), Scalar(-3), Scalar(0.5)));
- }
- void runAll() {
- bool passed = testLieProperties();
- passed &= testSaturation();
- passed &= testRawDataAcces();
- passed &= testConstructors();
- passed &= testFit();
- processTestResult(passed);
- }
- private:
- bool testLieProperties() {
- LieGroupTests<RxSO3Type> tests(rxso3_vec_, tangent_vec_, point_vec_);
- return tests.doAllTestsPass();
- }
- bool testSaturation() {
- bool passed = true;
- RxSO3Type small1(Constants<Scalar>::epsilon(), SO3Type());
- RxSO3Type small2(Constants<Scalar>::epsilon(),
- SO3Type::exp(Vector3<Scalar>(Constants<Scalar>::pi(),
- Scalar(0), Scalar(0))));
- RxSO3Type saturated_product = small1 * small2;
- SOPHUS_TEST_APPROX(passed, saturated_product.scale(),
- Constants<Scalar>::epsilon(),
- Constants<Scalar>::epsilon());
- SOPHUS_TEST_APPROX(passed, saturated_product.so3().matrix(),
- (small1.so3() * small2.so3()).matrix(),
- Constants<Scalar>::epsilon());
- return passed;
- }
- bool testRawDataAcces() {
- bool passed = true;
- Eigen::Matrix<Scalar, 4, 1> raw = {Scalar(0), Scalar(1), Scalar(0),
- Scalar(0)};
- Eigen::Map<RxSO3Type const> map_of_const_rxso3(raw.data());
- SOPHUS_TEST_APPROX(passed, map_of_const_rxso3.quaternion().coeffs().eval(),
- raw, Constants<Scalar>::epsilon());
- SOPHUS_TEST_EQUAL(passed, map_of_const_rxso3.quaternion().coeffs().data(),
- raw.data());
- Eigen::Map<RxSO3Type const> const_shallow_copy = map_of_const_rxso3;
- SOPHUS_TEST_EQUAL(passed, const_shallow_copy.quaternion().coeffs().eval(),
- map_of_const_rxso3.quaternion().coeffs().eval());
- Eigen::Matrix<Scalar, 4, 1> raw2 = {Scalar(1), Scalar(0), Scalar(0),
- Scalar(0)};
- Eigen::Map<RxSO3Type> map_of_rxso3(raw.data());
- Eigen::Quaternion<Scalar> quat;
- quat.coeffs() = raw2;
- map_of_rxso3.setQuaternion(quat);
- SOPHUS_TEST_APPROX(passed, map_of_rxso3.quaternion().coeffs().eval(), raw2,
- Constants<Scalar>::epsilon());
- SOPHUS_TEST_EQUAL(passed, map_of_rxso3.quaternion().coeffs().data(),
- raw.data());
- SOPHUS_TEST_NEQ(passed, map_of_rxso3.quaternion().coeffs().data(),
- quat.coeffs().data());
- Eigen::Map<RxSO3Type> shallow_copy = map_of_rxso3;
- SOPHUS_TEST_EQUAL(passed, shallow_copy.quaternion().coeffs().eval(),
- map_of_rxso3.quaternion().coeffs().eval());
- RxSO3Type const const_so3(quat);
- for (int i = 0; i < 4; ++i) {
- SOPHUS_TEST_EQUAL(passed, const_so3.data()[i], raw2.data()[i]);
- }
- RxSO3Type so3(quat);
- for (int i = 0; i < 4; ++i) {
- so3.data()[i] = raw[i];
- }
- for (int i = 0; i < 4; ++i) {
- SOPHUS_TEST_EQUAL(passed, so3.data()[i], raw.data()[i]);
- }
- // regression: test that rotationMatrix API doesn't change underlying value
- // for non-const-map and compiles at all for const-map
- Eigen::Matrix<Scalar, 4, 1> raw3 = {Scalar(2), Scalar(0), Scalar(0),
- Scalar(0)};
- Eigen::Map<RxSO3Type> map_of_rxso3_3(raw3.data());
- Eigen::Map<const RxSO3Type> const_map_of_rxso3_3(raw3.data());
- RxSO3Type rxso3_copy3 = map_of_rxso3_3;
- const RotationMatrixType r_ref = map_of_rxso3_3.so3().matrix();
- const RotationMatrixType r = map_of_rxso3_3.rotationMatrix();
- SOPHUS_TEST_APPROX(passed, r_ref, r, Constants<Scalar>::epsilon());
- SOPHUS_TEST_APPROX(passed, map_of_rxso3_3.quaternion().coeffs().eval(),
- rxso3_copy3.quaternion().coeffs().eval(),
- Constants<Scalar>::epsilon());
- const RotationMatrixType r_const = const_map_of_rxso3_3.rotationMatrix();
- SOPHUS_TEST_APPROX(passed, r_ref, r_const, Constants<Scalar>::epsilon());
- SOPHUS_TEST_APPROX(
- passed, const_map_of_rxso3_3.quaternion().coeffs().eval(),
- rxso3_copy3.quaternion().coeffs().eval(), Constants<Scalar>::epsilon());
- Eigen::Matrix<Scalar, 4, 1> data1, data2;
- data1 << Scalar(.1), Scalar(.2), Scalar(.3), Scalar(.4);
- data2 << Scalar(.5), Scalar(.4), Scalar(.3), Scalar(.2);
- Eigen::Map<RxSO3Type> map1(data1.data()), map2(data2.data());
- // map -> map assignment
- map2 = map1;
- SOPHUS_TEST_EQUAL(passed, map1.matrix(), map2.matrix());
- // map -> type assignment
- RxSO3Type copy;
- copy = map1;
- SOPHUS_TEST_EQUAL(passed, map1.matrix(), copy.matrix());
- // type -> map assignment
- copy = RxSO3Type::exp(Tangent(Scalar(0.2), Scalar(0.5),
- Scalar(-1.0), Scalar(1.1)));
- map1 = copy;
- SOPHUS_TEST_EQUAL(passed, map1.matrix(), copy.matrix());
- return passed;
- }
- bool testConstructors() {
- bool passed = true;
- RxSO3Type rxso3;
- Scalar scale(1.2);
- rxso3.setScale(scale);
- SOPHUS_TEST_APPROX(passed, scale, rxso3.scale(),
- Constants<Scalar>::epsilon(), "setScale");
- auto so3 = rxso3_vec_[0].so3();
- rxso3.setSO3(so3);
- SOPHUS_TEST_APPROX(passed, scale, rxso3.scale(),
- Constants<Scalar>::epsilon(), "setScale");
- SOPHUS_TEST_APPROX(passed, RxSO3Type(scale, so3).matrix(), rxso3.matrix(),
- Constants<Scalar>::epsilon(), "RxSO3(scale, SO3)");
- SOPHUS_TEST_APPROX(passed, RxSO3Type(scale, so3.matrix()).matrix(),
- rxso3.matrix(), Constants<Scalar>::epsilon(),
- "RxSO3(scale, SO3)");
- Matrix3<Scalar> R =
- SO3<Scalar>::exp(Point(Scalar(0.2), Scalar(0.5), Scalar(-1.0)))
- .matrix();
- Matrix3<Scalar> sR = R * Scalar(1.3);
- SOPHUS_TEST_APPROX(passed, RxSO3Type(sR).matrix(), sR,
- Constants<Scalar>::epsilon(), "RxSO3(sR)");
- rxso3.setScaledRotationMatrix(sR);
- SOPHUS_TEST_APPROX(passed, sR, rxso3.matrix(), Constants<Scalar>::epsilon(),
- "setScaleRotationMatrix");
- rxso3.setScale(scale);
- rxso3.setRotationMatrix(R);
- SOPHUS_TEST_APPROX(passed, R, rxso3.rotationMatrix(),
- Constants<Scalar>::epsilon(), "setRotationMatrix");
- SOPHUS_TEST_APPROX(passed, scale, rxso3.scale(),
- Constants<Scalar>::epsilon(), "setScale");
- return passed;
- }
- template <class S = Scalar>
- enable_if_t<std::is_floating_point<S>::value, bool> testFit() {
- bool passed = true;
- for (int i = 0; i < 10; ++i) {
- Matrix3<Scalar> M = Matrix3<Scalar>::Random();
- for (Scalar scale : {Scalar(0.01), Scalar(0.99), Scalar(1), Scalar(10)}) {
- Matrix3<Scalar> R = makeRotationMatrix(M);
- Matrix3<Scalar> sR = scale * R;
- SOPHUS_TEST(passed, isScaledOrthogonalAndPositive(sR),
- "isScaledOrthogonalAndPositive(sR): % *\n%", scale, R);
- Matrix3<Scalar> sR_cols_swapped;
- sR_cols_swapped << sR.col(1), sR.col(0), sR.col(2);
- SOPHUS_TEST(passed, !isScaledOrthogonalAndPositive(sR_cols_swapped),
- "isScaledOrthogonalAndPositive(-sR): % *\n%", scale, R);
- }
- }
- return passed;
- }
- template <class S = Scalar>
- enable_if_t<!std::is_floating_point<S>::value, bool> testFit() {
- return true;
- }
- std::vector<RxSO3Type, Eigen::aligned_allocator<RxSO3Type>> rxso3_vec_;
- std::vector<Tangent, Eigen::aligned_allocator<Tangent>> tangent_vec_;
- std::vector<Point, Eigen::aligned_allocator<Point>> point_vec_;
- };
- int test_rxso3() {
- using std::cerr;
- using std::endl;
- cerr << "Test RxSO3" << endl << endl;
- cerr << "Double tests: " << endl;
- Tests<double>().runAll();
- cerr << "Float tests: " << endl;
- Tests<float>().runAll();
- #if SOPHUS_CERES
- cerr << "ceres::Jet<double, 3> tests: " << endl;
- Tests<ceres::Jet<double, 3>>().runAll();
- #endif
- return 0;
- }
- } // namespace Sophus
- int main() { return Sophus::test_rxso3(); }
|