123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850 |
- /// @file
- /// Special orthogonal group SO(3) - rotation in 3d.
- #ifndef SOPHUS_SO3_HPP
- #define SOPHUS_SO3_HPP
- #include "rotation_matrix.hpp"
- #include "so2.hpp"
- #include "types.hpp"
- // Include only the selective set of Eigen headers that we need.
- // This helps when using Sophus with unusual compilers, like nvcc.
- #include <eigen3/Eigen/src/Geometry/OrthoMethods.h>
- #include <eigen3/Eigen/src/Geometry/Quaternion.h>
- #include <eigen3/Eigen/src/Geometry/RotationBase.h>
- namespace Sophus {
- template <class Scalar_, int Options = 0>
- class SO3;
- using SO3d = SO3<double>;
- using SO3f = SO3<float>;
- } // namespace Sophus
- namespace Eigen {
- namespace internal {
- template <class Scalar_, int Options_>
- struct traits<Sophus::SO3<Scalar_, Options_>> {
- static constexpr int Options = Options_;
- using Scalar = Scalar_;
- using QuaternionType = Eigen::Quaternion<Scalar, Options>;
- };
- template <class Scalar_, int Options_>
- struct traits<Map<Sophus::SO3<Scalar_>, Options_>>
- : traits<Sophus::SO3<Scalar_, Options_>> {
- static constexpr int Options = Options_;
- using Scalar = Scalar_;
- using QuaternionType = Map<Eigen::Quaternion<Scalar>, Options>;
- };
- template <class Scalar_, int Options_>
- struct traits<Map<Sophus::SO3<Scalar_> const, Options_>>
- : traits<Sophus::SO3<Scalar_, Options_> const> {
- static constexpr int Options = Options_;
- using Scalar = Scalar_;
- using QuaternionType = Map<Eigen::Quaternion<Scalar> const, Options>;
- };
- } // namespace internal
- } // namespace Eigen
- namespace Sophus {
- /// SO3 base type - implements SO3 class but is storage agnostic.
- ///
- /// SO(3) is the group of rotations in 3d. As a matrix group, it is the set of
- /// matrices which are orthogonal such that ``R * R' = I`` (with ``R'`` being
- /// the transpose of ``R``) and have a positive determinant. In particular, the
- /// determinant is 1. Internally, the group is represented as a unit quaternion.
- /// Unit quaternion can be seen as members of the special unitary group SU(2).
- /// SU(2) is a double cover of SO(3). Hence, for every rotation matrix ``R``,
- /// there exist two unit quaternions: ``(r, v)`` and ``(-r, -v)``, with ``r``
- /// the real part and ``v`` being the imaginary 3-vector part of the quaternion.
- ///
- /// SO(3) is a compact, but non-commutative group. First it is compact since the
- /// set of rotation matrices is a closed and bounded set. Second it is
- /// non-commutative since the equation ``R_1 * R_2 = R_2 * R_1`` does not hold
- /// in general. For example rotating an object by some degrees about its
- /// ``x``-axis and then by some degrees about its y axis, does not lead to the
- /// same orientation when rotation first about ``y`` and then about ``x``.
- ///
- /// Class invariant: The 2-norm of ``unit_quaternion`` must be close to 1.
- /// Technically speaking, it must hold that:
- ///
- /// ``|unit_quaternion().squaredNorm() - 1| <= Constants::epsilon()``.
- template <class Derived>
- class SO3Base {
- public:
- static constexpr int Options = Eigen::internal::traits<Derived>::Options;
- using Scalar = typename Eigen::internal::traits<Derived>::Scalar;
- using QuaternionType =
- typename Eigen::internal::traits<Derived>::QuaternionType;
- using QuaternionTemporaryType = Eigen::Quaternion<Scalar, Options>;
- /// Degrees of freedom of group, number of dimensions in tangent space.
- static int constexpr DoF = 3;
- /// Number of internal parameters used (quaternion is a 4-tuple).
- static int constexpr num_parameters = 4;
- /// Group transformations are 3x3 matrices.
- static int constexpr N = 3;
- using Transformation = Matrix<Scalar, N, N>;
- using Point = Vector3<Scalar>;
- using HomogeneousPoint = Vector4<Scalar>;
- using Line = ParametrizedLine3<Scalar>;
- using Tangent = Vector<Scalar, DoF>;
- using Adjoint = Matrix<Scalar, DoF, DoF>;
- struct TangentAndTheta {
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW
- Tangent tangent;
- Scalar theta;
- };
- /// For binary operations the return type is determined with the
- /// ScalarBinaryOpTraits feature of Eigen. This allows mixing concrete and Map
- /// types, as well as other compatible scalar types such as Ceres::Jet and
- /// double scalars with SO3 operations.
- template <typename OtherDerived>
- using ReturnScalar = typename Eigen::ScalarBinaryOpTraits<
- Scalar, typename OtherDerived::Scalar>::ReturnType;
- template <typename OtherDerived>
- using SO3Product = SO3<ReturnScalar<OtherDerived>>;
- template <typename PointDerived>
- using PointProduct = Vector3<ReturnScalar<PointDerived>>;
- template <typename HPointDerived>
- using HomogeneousPointProduct = Vector4<ReturnScalar<HPointDerived>>;
- /// Adjoint transformation
- //
- /// This function return the adjoint transformation ``Ad`` of the group
- /// element ``A`` such that for all ``x`` it holds that
- /// ``hat(Ad_A * x) = A * hat(x) A^{-1}``. See hat-operator below.
- //
- /// For SO(3), it simply returns the rotation matrix corresponding to ``A``.
- ///
- SOPHUS_FUNC Adjoint Adj() const { return matrix(); }
- /// Extract rotation angle about canonical X-axis
- ///
- template <class S = Scalar>
- SOPHUS_FUNC enable_if_t<std::is_floating_point<S>::value, S> angleX() const {
- Sophus::Matrix3<Scalar> R = matrix();
- Sophus::Matrix2<Scalar> Rx = R.template block<2, 2>(1, 1);
- return SO2<Scalar>(makeRotationMatrix(Rx)).log();
- }
- /// Extract rotation angle about canonical Y-axis
- ///
- template <class S = Scalar>
- SOPHUS_FUNC enable_if_t<std::is_floating_point<S>::value, S> angleY() const {
- Sophus::Matrix3<Scalar> R = matrix();
- Sophus::Matrix2<Scalar> Ry;
- // clang-format off
- Ry <<
- R(0, 0), R(2, 0),
- R(0, 2), R(2, 2);
- // clang-format on
- return SO2<Scalar>(makeRotationMatrix(Ry)).log();
- }
- /// Extract rotation angle about canonical Z-axis
- ///
- template <class S = Scalar>
- SOPHUS_FUNC enable_if_t<std::is_floating_point<S>::value, S> angleZ() const {
- Sophus::Matrix3<Scalar> R = matrix();
- Sophus::Matrix2<Scalar> Rz = R.template block<2, 2>(0, 0);
- return SO2<Scalar>(makeRotationMatrix(Rz)).log();
- }
- /// Returns copy of instance casted to NewScalarType.
- ///
- template <class NewScalarType>
- SOPHUS_FUNC SO3<NewScalarType> cast() const {
- return SO3<NewScalarType>(unit_quaternion().template cast<NewScalarType>());
- }
- /// This provides unsafe read/write access to internal data. SO(3) is
- /// represented by an Eigen::Quaternion (four parameters). When using direct
- /// write access, the user needs to take care of that the quaternion stays
- /// normalized.
- ///
- /// Note: The first three Scalars represent the imaginary parts, while the
- /// forth Scalar represent the real part.
- ///
- SOPHUS_FUNC Scalar* data() {
- return unit_quaternion_nonconst().coeffs().data();
- }
- /// Const version of data() above.
- ///
- SOPHUS_FUNC Scalar const* data() const {
- return unit_quaternion().coeffs().data();
- }
- /// Returns derivative of this * SO3::exp(x) wrt. x at x=0.
- ///
- SOPHUS_FUNC Matrix<Scalar, num_parameters, DoF> Dx_this_mul_exp_x_at_0()
- const {
- Matrix<Scalar, num_parameters, DoF> J;
- Eigen::Quaternion<Scalar> const q = unit_quaternion();
- Scalar const c0 = Scalar(0.5) * q.w();
- Scalar const c1 = Scalar(0.5) * q.z();
- Scalar const c2 = -c1;
- Scalar const c3 = Scalar(0.5) * q.y();
- Scalar const c4 = Scalar(0.5) * q.x();
- Scalar const c5 = -c4;
- Scalar const c6 = -c3;
- J(0, 0) = c0;
- J(0, 1) = c2;
- J(0, 2) = c3;
- J(1, 0) = c1;
- J(1, 1) = c0;
- J(1, 2) = c5;
- J(2, 0) = c6;
- J(2, 1) = c4;
- J(2, 2) = c0;
- J(3, 0) = c5;
- J(3, 1) = c6;
- J(3, 2) = c2;
- return J;
- }
- /// Returns internal parameters of SO(3).
- ///
- /// It returns (q.imag[0], q.imag[1], q.imag[2], q.real), with q being the
- /// unit quaternion.
- ///
- SOPHUS_FUNC Sophus::Vector<Scalar, num_parameters> params() const {
- return unit_quaternion().coeffs();
- }
- /// Returns group inverse.
- ///
- SOPHUS_FUNC SO3<Scalar> inverse() const {
- return SO3<Scalar>(unit_quaternion().conjugate());
- }
- /// Logarithmic map
- ///
- /// Computes the logarithm, the inverse of the group exponential which maps
- /// element of the group (rotation matrices) to elements of the tangent space
- /// (rotation-vector).
- ///
- /// To be specific, this function computes ``vee(logmat(.))`` with
- /// ``logmat(.)`` being the matrix logarithm and ``vee(.)`` the vee-operator
- /// of SO(3).
- ///
- SOPHUS_FUNC Tangent log() const { return logAndTheta().tangent; }
- /// As above, but also returns ``theta = |omega|``.
- ///
- SOPHUS_FUNC TangentAndTheta logAndTheta() const {
- TangentAndTheta J;
- using std::abs;
- using std::atan;
- using std::sqrt;
- Scalar squared_n = unit_quaternion().vec().squaredNorm();
- Scalar w = unit_quaternion().w();
- Scalar two_atan_nbyw_by_n;
- /// Atan-based log thanks to
- ///
- /// C. Hertzberg et al.:
- /// "Integrating Generic Sensor Fusion Algorithms with Sound State
- /// Representation through Encapsulation of Manifolds"
- /// Information Fusion, 2011
- if (squared_n < Constants<Scalar>::epsilon() * Constants<Scalar>::epsilon()) {
- // If quaternion is normalized and n=0, then w should be 1;
- // w=0 should never happen here!
- SOPHUS_ENSURE(abs(w) >= Constants<Scalar>::epsilon(),
- "Quaternion (%) should be normalized!",
- unit_quaternion().coeffs().transpose());
- Scalar squared_w = w * w;
- two_atan_nbyw_by_n =
- Scalar(2) / w - Scalar(2.0/3.0) * (squared_n) / (w * squared_w);
- J.theta = Scalar(2) * squared_n / w;
- } else {
- Scalar n = sqrt(squared_n);
- if (abs(w) < Constants<Scalar>::epsilon()) {
- if (w > Scalar(0)) {
- two_atan_nbyw_by_n = Constants<Scalar>::pi() / n;
- } else {
- two_atan_nbyw_by_n = -Constants<Scalar>::pi() / n;
- }
- } else {
- two_atan_nbyw_by_n = Scalar(2) * atan(n / w) / n;
- }
- J.theta = two_atan_nbyw_by_n * n;
- }
- J.tangent = two_atan_nbyw_by_n * unit_quaternion().vec();
- return J;
- }
- /// It re-normalizes ``unit_quaternion`` to unit length.
- ///
- /// Note: Because of the class invariant, there is typically no need to call
- /// this function directly.
- ///
- SOPHUS_FUNC void normalize() {
- Scalar length = unit_quaternion_nonconst().norm();
- SOPHUS_ENSURE(length >= Constants<Scalar>::epsilon(),
- "Quaternion (%) should not be close to zero!",
- unit_quaternion_nonconst().coeffs().transpose());
- unit_quaternion_nonconst().coeffs() /= length;
- }
- /// Returns 3x3 matrix representation of the instance.
- ///
- /// For SO(3), the matrix representation is an orthogonal matrix ``R`` with
- /// ``det(R)=1``, thus the so-called "rotation matrix".
- ///
- SOPHUS_FUNC Transformation matrix() const {
- return unit_quaternion().toRotationMatrix();
- }
- /// Assignment-like operator from OtherDerived.
- ///
- template <class OtherDerived>
- SOPHUS_FUNC SO3Base<Derived>& operator=(SO3Base<OtherDerived> const& other) {
- unit_quaternion_nonconst() = other.unit_quaternion();
- return *this;
- }
- /// Group multiplication, which is rotation concatenation.
- ///
- template <typename OtherDerived>
- SOPHUS_FUNC SO3Product<OtherDerived> operator*(
- SO3Base<OtherDerived> const& other) const {
- using QuaternionProductType =
- typename SO3Product<OtherDerived>::QuaternionType;
- const QuaternionType& a = unit_quaternion();
- const typename OtherDerived::QuaternionType& b = other.unit_quaternion();
- /// NOTE: We cannot use Eigen's Quaternion multiplication because it always
- /// returns a Quaternion of the same Scalar as this object, so it is not
- /// able to multiple Jets and doubles correctly.
- return SO3Product<OtherDerived>(QuaternionProductType(
- a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
- a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
- a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
- a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()));
- }
- /// Group action on 3-points.
- ///
- /// This function rotates a 3 dimensional point ``p`` by the SO3 element
- /// ``bar_R_foo`` (= rotation matrix): ``p_bar = bar_R_foo * p_foo``.
- ///
- /// Since SO3 is internally represented by a unit quaternion ``q``, it is
- /// implemented as ``p_bar = q * p_foo * q^{*}``
- /// with ``q^{*}`` being the quaternion conjugate of ``q``.
- ///
- /// Geometrically, ``p`` is rotated by angle ``|omega|`` around the
- /// axis ``omega/|omega|`` with ``omega := vee(log(bar_R_foo))``.
- ///
- /// For ``vee``-operator, see below.
- ///
- template <typename PointDerived,
- typename = typename std::enable_if<
- IsFixedSizeVector<PointDerived, 3>::value>::type>
- SOPHUS_FUNC PointProduct<PointDerived> operator*(
- Eigen::MatrixBase<PointDerived> const& p) const {
- /// NOTE: We cannot use Eigen's Quaternion transformVector because it always
- /// returns a Vector3 of the same Scalar as this quaternion, so it is not
- /// able to be applied to Jets and doubles correctly.
- const QuaternionType& q = unit_quaternion();
- PointProduct<PointDerived> uv = q.vec().cross(p);
- uv += uv;
- return p + q.w() * uv + q.vec().cross(uv);
- }
- /// Group action on homogeneous 3-points. See above for more details.
- template <typename HPointDerived,
- typename = typename std::enable_if<
- IsFixedSizeVector<HPointDerived, 4>::value>::type>
- SOPHUS_FUNC HomogeneousPointProduct<HPointDerived> operator*(
- Eigen::MatrixBase<HPointDerived> const& p) const {
- const auto rp = *this * p.template head<3>();
- return HomogeneousPointProduct<HPointDerived>(rp(0), rp(1), rp(2), p(3));
- }
- /// Group action on lines.
- ///
- /// This function rotates a parametrized line ``l(t) = o + t * d`` by the SO3
- /// element:
- ///
- /// Both direction ``d`` and origin ``o`` are rotated as a 3 dimensional point
- ///
- SOPHUS_FUNC Line operator*(Line const& l) const {
- return Line((*this) * l.origin(), (*this) * l.direction());
- }
- /// In-place group multiplication. This method is only valid if the return
- /// type of the multiplication is compatible with this SO3's Scalar type.
- ///
- template <typename OtherDerived,
- typename = typename std::enable_if<
- std::is_same<Scalar, ReturnScalar<OtherDerived>>::value>::type>
- SOPHUS_FUNC SO3Base<Derived>& operator*=(SO3Base<OtherDerived> const& other) {
- *static_cast<Derived*>(this) = *this * other;
- return *this;
- }
- /// Takes in quaternion, and normalizes it.
- ///
- /// Precondition: The quaternion must not be close to zero.
- ///
- SOPHUS_FUNC void setQuaternion(Eigen::Quaternion<Scalar> const& quaternion) {
- unit_quaternion_nonconst() = quaternion;
- normalize();
- }
- /// Accessor of unit quaternion.
- ///
- SOPHUS_FUNC QuaternionType const& unit_quaternion() const {
- return static_cast<Derived const*>(this)->unit_quaternion();
- }
- private:
- /// Mutator of unit_quaternion is private to ensure class invariant. That is
- /// the quaternion must stay close to unit length.
- ///
- SOPHUS_FUNC QuaternionType& unit_quaternion_nonconst() {
- return static_cast<Derived*>(this)->unit_quaternion_nonconst();
- }
- };
- /// SO3 using default storage; derived from SO3Base.
- template <class Scalar_, int Options>
- class SO3 : public SO3Base<SO3<Scalar_, Options>> {
- public:
- using Base = SO3Base<SO3<Scalar_, Options>>;
- static int constexpr DoF = Base::DoF;
- static int constexpr num_parameters = Base::num_parameters;
- using Scalar = Scalar_;
- using Transformation = typename Base::Transformation;
- using Point = typename Base::Point;
- using HomogeneousPoint = typename Base::HomogeneousPoint;
- using Tangent = typename Base::Tangent;
- using Adjoint = typename Base::Adjoint;
- using QuaternionMember = Eigen::Quaternion<Scalar, Options>;
- /// ``Base`` is friend so unit_quaternion_nonconst can be accessed from
- /// ``Base``.
- friend class SO3Base<SO3<Scalar, Options>>;
- using Base::operator=;
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW
- /// Default constructor initializes unit quaternion to identity rotation.
- ///
- SOPHUS_FUNC SO3()
- : unit_quaternion_(Scalar(1), Scalar(0), Scalar(0), Scalar(0)) {}
- /// Copy constructor
- ///
- SOPHUS_FUNC SO3(SO3 const& other) = default;
- /// Copy-like constructor from OtherDerived.
- ///
- template <class OtherDerived>
- SOPHUS_FUNC SO3(SO3Base<OtherDerived> const& other)
- : unit_quaternion_(other.unit_quaternion()) {}
- /// Constructor from rotation matrix
- ///
- /// Precondition: rotation matrix needs to be orthogonal with determinant
- /// of 1.
- ///
- SOPHUS_FUNC SO3(Transformation const& R) : unit_quaternion_(R) {
- SOPHUS_ENSURE(isOrthogonal(R), "R is not orthogonal:\n %",
- R * R.transpose());
- SOPHUS_ENSURE(R.determinant() > Scalar(0), "det(R) is not positive: %",
- R.determinant());
- }
- /// Constructor from quaternion
- ///
- /// Precondition: quaternion must not be close to zero.
- ///
- template <class D>
- SOPHUS_FUNC explicit SO3(Eigen::QuaternionBase<D> const& quat)
- : unit_quaternion_(quat) {
- static_assert(
- std::is_same<typename Eigen::QuaternionBase<D>::Scalar, Scalar>::value,
- "Input must be of same scalar type");
- Base::normalize();
- }
- /// Accessor of unit quaternion.
- ///
- SOPHUS_FUNC QuaternionMember const& unit_quaternion() const {
- return unit_quaternion_;
- }
- /// Returns derivative of exp(x) wrt. x.
- ///
- SOPHUS_FUNC static Sophus::Matrix<Scalar, num_parameters, DoF> Dx_exp_x(
- Tangent const& omega) {
- using std::cos;
- using std::exp;
- using std::sin;
- using std::sqrt;
- Scalar const c0 = omega[0] * omega[0];
- Scalar const c1 = omega[1] * omega[1];
- Scalar const c2 = omega[2] * omega[2];
- Scalar const c3 = c0 + c1 + c2;
- if (c3 < Constants<Scalar>::epsilon()) {
- return Dx_exp_x_at_0();
- }
- Scalar const c4 = sqrt(c3);
- Scalar const c5 = 1.0 / c4;
- Scalar const c6 = 0.5 * c4;
- Scalar const c7 = sin(c6);
- Scalar const c8 = c5 * c7;
- Scalar const c9 = pow(c3, -3.0L / 2.0L);
- Scalar const c10 = c7 * c9;
- Scalar const c11 = Scalar(1.0) / c3;
- Scalar const c12 = cos(c6);
- Scalar const c13 = Scalar(0.5) * c11 * c12;
- Scalar const c14 = c7 * c9 * omega[0];
- Scalar const c15 = Scalar(0.5) * c11 * c12 * omega[0];
- Scalar const c16 = -c14 * omega[1] + c15 * omega[1];
- Scalar const c17 = -c14 * omega[2] + c15 * omega[2];
- Scalar const c18 = omega[1] * omega[2];
- Scalar const c19 = -c10 * c18 + c13 * c18;
- Scalar const c20 = Scalar(0.5) * c5 * c7;
- Sophus::Matrix<Scalar, num_parameters, DoF> J;
- J(0, 0) = -c0 * c10 + c0 * c13 + c8;
- J(0, 1) = c16;
- J(0, 2) = c17;
- J(1, 0) = c16;
- J(1, 1) = -c1 * c10 + c1 * c13 + c8;
- J(1, 2) = c19;
- J(2, 0) = c17;
- J(2, 1) = c19;
- J(2, 2) = -c10 * c2 + c13 * c2 + c8;
- J(3, 0) = -c20 * omega[0];
- J(3, 1) = -c20 * omega[1];
- J(3, 2) = -c20 * omega[2];
- return J;
- }
- /// Returns derivative of exp(x) wrt. x_i at x=0.
- ///
- SOPHUS_FUNC static Sophus::Matrix<Scalar, num_parameters, DoF>
- Dx_exp_x_at_0() {
- Sophus::Matrix<Scalar, num_parameters, DoF> J;
- // clang-format off
- J << Scalar(0.5), Scalar(0), Scalar(0),
- Scalar(0), Scalar(0.5), Scalar(0),
- Scalar(0), Scalar(0), Scalar(0.5),
- Scalar(0), Scalar(0), Scalar(0);
- // clang-format on
- return J;
- }
- /// Returns derivative of exp(x).matrix() wrt. ``x_i at x=0``.
- ///
- SOPHUS_FUNC static Transformation Dxi_exp_x_matrix_at_0(int i) {
- return generator(i);
- }
- /// Group exponential
- ///
- /// This functions takes in an element of tangent space (= rotation vector
- /// ``omega``) and returns the corresponding element of the group SO(3).
- ///
- /// To be more specific, this function computes ``expmat(hat(omega))``
- /// with ``expmat(.)`` being the matrix exponential and ``hat(.)`` being the
- /// hat()-operator of SO(3).
- ///
- SOPHUS_FUNC static SO3<Scalar> exp(Tangent const& omega) {
- Scalar theta;
- return expAndTheta(omega, &theta);
- }
- /// As above, but also returns ``theta = |omega|`` as out-parameter.
- ///
- /// Precondition: ``theta`` must not be ``nullptr``.
- ///
- SOPHUS_FUNC static SO3<Scalar> expAndTheta(Tangent const& omega,
- Scalar* theta) {
- SOPHUS_ENSURE(theta != nullptr, "must not be nullptr.");
- using std::abs;
- using std::cos;
- using std::sin;
- using std::sqrt;
- Scalar theta_sq = omega.squaredNorm();
- Scalar imag_factor;
- Scalar real_factor;
- if (theta_sq <
- Constants<Scalar>::epsilon() * Constants<Scalar>::epsilon()) {
- *theta = Scalar(0);
- Scalar theta_po4 = theta_sq * theta_sq;
- imag_factor = Scalar(0.5) - Scalar(1.0 / 48.0) * theta_sq +
- Scalar(1.0 / 3840.0) * theta_po4;
- real_factor = Scalar(1) - Scalar(1.0 / 8.0) * theta_sq +
- Scalar(1.0 / 384.0) * theta_po4;
- } else {
- *theta = sqrt(theta_sq);
- Scalar half_theta = Scalar(0.5) * (*theta);
- Scalar sin_half_theta = sin(half_theta);
- imag_factor = sin_half_theta / (*theta);
- real_factor = cos(half_theta);
- }
- SO3 q;
- q.unit_quaternion_nonconst() =
- QuaternionMember(real_factor, imag_factor * omega.x(),
- imag_factor * omega.y(), imag_factor * omega.z());
- SOPHUS_ENSURE(abs(q.unit_quaternion().squaredNorm() - Scalar(1)) <
- Sophus::Constants<Scalar>::epsilon(),
- "SO3::exp failed! omega: %, real: %, img: %",
- omega.transpose(), real_factor, imag_factor);
- return q;
- }
- /// Returns closest SO3 given arbitrary 3x3 matrix.
- ///
- template <class S = Scalar>
- static SOPHUS_FUNC enable_if_t<std::is_floating_point<S>::value, SO3>
- fitToSO3(Transformation const& R) {
- return SO3(::Sophus::makeRotationMatrix(R));
- }
- /// Returns the ith infinitesimal generators of SO(3).
- ///
- /// The infinitesimal generators of SO(3) are:
- ///
- /// ```
- /// | 0 0 0 |
- /// G_0 = | 0 0 -1 |
- /// | 0 1 0 |
- ///
- /// | 0 0 1 |
- /// G_1 = | 0 0 0 |
- /// | -1 0 0 |
- ///
- /// | 0 -1 0 |
- /// G_2 = | 1 0 0 |
- /// | 0 0 0 |
- /// ```
- ///
- /// Precondition: ``i`` must be 0, 1 or 2.
- ///
- SOPHUS_FUNC static Transformation generator(int i) {
- SOPHUS_ENSURE(i >= 0 && i <= 2, "i should be in range [0,2].");
- Tangent e;
- e.setZero();
- e[i] = Scalar(1);
- return hat(e);
- }
- /// hat-operator
- ///
- /// It takes in the 3-vector representation ``omega`` (= rotation vector) and
- /// returns the corresponding matrix representation of Lie algebra element.
- ///
- /// Formally, the hat()-operator of SO(3) is defined as
- ///
- /// ``hat(.): R^3 -> R^{3x3}, hat(omega) = sum_i omega_i * G_i``
- /// (for i=0,1,2)
- ///
- /// with ``G_i`` being the ith infinitesimal generator of SO(3).
- ///
- /// The corresponding inverse is the vee()-operator, see below.
- ///
- SOPHUS_FUNC static Transformation hat(Tangent const& omega) {
- Transformation Omega;
- // clang-format off
- Omega <<
- Scalar(0), -omega(2), omega(1),
- omega(2), Scalar(0), -omega(0),
- -omega(1), omega(0), Scalar(0);
- // clang-format on
- return Omega;
- }
- /// Lie bracket
- ///
- /// It computes the Lie bracket of SO(3). To be more specific, it computes
- ///
- /// ``[omega_1, omega_2]_so3 := vee([hat(omega_1), hat(omega_2)])``
- ///
- /// with ``[A,B] := AB-BA`` being the matrix commutator, ``hat(.)`` the
- /// hat()-operator and ``vee(.)`` the vee()-operator of SO3.
- ///
- /// For the Lie algebra so3, the Lie bracket is simply the cross product:
- ///
- /// ``[omega_1, omega_2]_so3 = omega_1 x omega_2.``
- ///
- SOPHUS_FUNC static Tangent lieBracket(Tangent const& omega1,
- Tangent const& omega2) {
- return omega1.cross(omega2);
- }
- /// Construct x-axis rotation.
- ///
- static SOPHUS_FUNC SO3 rotX(Scalar const& x) {
- return SO3::exp(Sophus::Vector3<Scalar>(x, Scalar(0), Scalar(0)));
- }
- /// Construct y-axis rotation.
- ///
- static SOPHUS_FUNC SO3 rotY(Scalar const& y) {
- return SO3::exp(Sophus::Vector3<Scalar>(Scalar(0), y, Scalar(0)));
- }
- /// Construct z-axis rotation.
- ///
- static SOPHUS_FUNC SO3 rotZ(Scalar const& z) {
- return SO3::exp(Sophus::Vector3<Scalar>(Scalar(0), Scalar(0), z));
- }
- /// Draw uniform sample from SO(3) manifold.
- /// Based on: http://planning.cs.uiuc.edu/node198.html
- ///
- template <class UniformRandomBitGenerator>
- static SO3 sampleUniform(UniformRandomBitGenerator& generator) {
- static_assert(IsUniformRandomBitGenerator<UniformRandomBitGenerator>::value,
- "generator must meet the UniformRandomBitGenerator concept");
- std::uniform_real_distribution<Scalar> uniform(Scalar(0), Scalar(1));
- std::uniform_real_distribution<Scalar> uniform_twopi(
- Scalar(0), 2 * Constants<Scalar>::pi());
- const Scalar u1 = uniform(generator);
- const Scalar u2 = uniform_twopi(generator);
- const Scalar u3 = uniform_twopi(generator);
- const Scalar a = sqrt(1 - u1);
- const Scalar b = sqrt(u1);
- return SO3(
- QuaternionMember(a * sin(u2), a * cos(u2), b * sin(u3), b * cos(u3)));
- }
- /// vee-operator
- ///
- /// It takes the 3x3-matrix representation ``Omega`` and maps it to the
- /// corresponding vector representation of Lie algebra.
- ///
- /// This is the inverse of the hat()-operator, see above.
- ///
- /// Precondition: ``Omega`` must have the following structure:
- ///
- /// | 0 -c b |
- /// | c 0 -a |
- /// | -b a 0 |
- ///
- SOPHUS_FUNC static Tangent vee(Transformation const& Omega) {
- return Tangent(Omega(2, 1), Omega(0, 2), Omega(1, 0));
- }
- protected:
- /// Mutator of unit_quaternion is protected to ensure class invariant.
- ///
- SOPHUS_FUNC QuaternionMember& unit_quaternion_nonconst() {
- return unit_quaternion_;
- }
- QuaternionMember unit_quaternion_;
- };
- } // namespace Sophus
- namespace Eigen {
- /// Specialization of Eigen::Map for ``SO3``; derived from SO3Base.
- ///
- /// Allows us to wrap SO3 objects around POD array (e.g. external c style
- /// quaternion).
- template <class Scalar_, int Options>
- class Map<Sophus::SO3<Scalar_>, Options>
- : public Sophus::SO3Base<Map<Sophus::SO3<Scalar_>, Options>> {
- public:
- using Base = Sophus::SO3Base<Map<Sophus::SO3<Scalar_>, Options>>;
- using Scalar = Scalar_;
- using Transformation = typename Base::Transformation;
- using Point = typename Base::Point;
- using HomogeneousPoint = typename Base::HomogeneousPoint;
- using Tangent = typename Base::Tangent;
- using Adjoint = typename Base::Adjoint;
- /// ``Base`` is friend so unit_quaternion_nonconst can be accessed from
- /// ``Base``.
- friend class Sophus::SO3Base<Map<Sophus::SO3<Scalar_>, Options>>;
- using Base::operator=;
- using Base::operator*=;
- using Base::operator*;
- SOPHUS_FUNC Map(Scalar* coeffs) : unit_quaternion_(coeffs) {}
- /// Accessor of unit quaternion.
- ///
- SOPHUS_FUNC Map<Eigen::Quaternion<Scalar>, Options> const& unit_quaternion()
- const {
- return unit_quaternion_;
- }
- protected:
- /// Mutator of unit_quaternion is protected to ensure class invariant.
- ///
- SOPHUS_FUNC Map<Eigen::Quaternion<Scalar>, Options>&
- unit_quaternion_nonconst() {
- return unit_quaternion_;
- }
- Map<Eigen::Quaternion<Scalar>, Options> unit_quaternion_;
- };
- /// Specialization of Eigen::Map for ``SO3 const``; derived from SO3Base.
- ///
- /// Allows us to wrap SO3 objects around POD array (e.g. external c style
- /// quaternion).
- template <class Scalar_, int Options>
- class Map<Sophus::SO3<Scalar_> const, Options>
- : public Sophus::SO3Base<Map<Sophus::SO3<Scalar_> const, Options>> {
- public:
- using Base = Sophus::SO3Base<Map<Sophus::SO3<Scalar_> const, Options>>;
- using Scalar = Scalar_;
- using Transformation = typename Base::Transformation;
- using Point = typename Base::Point;
- using HomogeneousPoint = typename Base::HomogeneousPoint;
- using Tangent = typename Base::Tangent;
- using Adjoint = typename Base::Adjoint;
- using Base::operator*=;
- using Base::operator*;
- SOPHUS_FUNC Map(Scalar const* coeffs) : unit_quaternion_(coeffs) {}
- /// Accessor of unit quaternion.
- ///
- SOPHUS_FUNC Map<Eigen::Quaternion<Scalar> const, Options> const&
- unit_quaternion() const {
- return unit_quaternion_;
- }
- protected:
- /// Mutator of unit_quaternion is protected to ensure class invariant.
- ///
- Map<Eigen::Quaternion<Scalar> const, Options> const unit_quaternion_;
- };
- } // namespace Eigen
- #endif
|