123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621 |
- /// @file
- /// Special orthogonal group SO(2) - rotation in 2d.
- #ifndef SOPHUS_SO2_HPP
- #define SOPHUS_SO2_HPP
- #include <complex>
- #include <type_traits>
- // Include only the selective set of Eigen headers that we need.
- // This helps when using Sophus with unusual compilers, like nvcc.
- #include <eigen3/Eigen/LU>
- #include "rotation_matrix.hpp"
- #include "types.hpp"
- namespace Sophus {
- template <class Scalar_, int Options = 0>
- class SO2;
- using SO2d = SO2<double>;
- using SO2f = SO2<float>;
- } // namespace Sophus
- namespace Eigen {
- namespace internal {
- template <class Scalar_, int Options_>
- struct traits<Sophus::SO2<Scalar_, Options_>> {
- static constexpr int Options = Options_;
- using Scalar = Scalar_;
- using ComplexType = Sophus::Vector2<Scalar, Options>;
- };
- template <class Scalar_, int Options_>
- struct traits<Map<Sophus::SO2<Scalar_>, Options_>>
- : traits<Sophus::SO2<Scalar_, Options_>> {
- static constexpr int Options = Options_;
- using Scalar = Scalar_;
- using ComplexType = Map<Sophus::Vector2<Scalar>, Options>;
- };
- template <class Scalar_, int Options_>
- struct traits<Map<Sophus::SO2<Scalar_> const, Options_>>
- : traits<Sophus::SO2<Scalar_, Options_> const> {
- static constexpr int Options = Options_;
- using Scalar = Scalar_;
- using ComplexType = Map<Sophus::Vector2<Scalar> const, Options>;
- };
- } // namespace internal
- } // namespace Eigen
- namespace Sophus {
- /// SO2 base type - implements SO2 class but is storage agnostic.
- ///
- /// SO(2) is the group of rotations in 2d. As a matrix group, it is the set of
- /// matrices which are orthogonal such that ``R * R' = I`` (with ``R'`` being
- /// the transpose of ``R``) and have a positive determinant. In particular, the
- /// determinant is 1. Let ``theta`` be the rotation angle, the rotation matrix
- /// can be written in close form:
- ///
- /// | cos(theta) -sin(theta) |
- /// | sin(theta) cos(theta) |
- ///
- /// As a matter of fact, the first column of those matrices is isomorph to the
- /// set of unit complex numbers U(1). Thus, internally, SO2 is represented as
- /// complex number with length 1.
- ///
- /// SO(2) is a compact and commutative group. First it is compact since the set
- /// of rotation matrices is a closed and bounded set. Second it is commutative
- /// since ``R(alpha) * R(beta) = R(beta) * R(alpha)``, simply because ``alpha +
- /// beta = beta + alpha`` with ``alpha`` and ``beta`` being rotation angles
- /// (about the same axis).
- ///
- /// Class invariant: The 2-norm of ``unit_complex`` must be close to 1.
- /// Technically speaking, it must hold that:
- ///
- /// ``|unit_complex().squaredNorm() - 1| <= Constants::epsilon()``.
- template <class Derived>
- class SO2Base {
- public:
- static constexpr int Options = Eigen::internal::traits<Derived>::Options;
- using Scalar = typename Eigen::internal::traits<Derived>::Scalar;
- using ComplexT = typename Eigen::internal::traits<Derived>::ComplexType;
- using ComplexTemporaryType = Sophus::Vector2<Scalar, Options>;
- /// Degrees of freedom of manifold, number of dimensions in tangent space (one
- /// since we only have in-plane rotations).
- static int constexpr DoF = 1;
- /// Number of internal parameters used (complex numbers are a tuples).
- static int constexpr num_parameters = 2;
- /// Group transformations are 2x2 matrices.
- static int constexpr N = 2;
- using Transformation = Matrix<Scalar, N, N>;
- using Point = Vector2<Scalar>;
- using HomogeneousPoint = Vector3<Scalar>;
- using Line = ParametrizedLine2<Scalar>;
- using Tangent = Scalar;
- using Adjoint = Scalar;
- /// For binary operations the return type is determined with the
- /// ScalarBinaryOpTraits feature of Eigen. This allows mixing concrete and Map
- /// types, as well as other compatible scalar types such as Ceres::Jet and
- /// double scalars with SO2 operations.
- template <typename OtherDerived>
- using ReturnScalar = typename Eigen::ScalarBinaryOpTraits<
- Scalar, typename OtherDerived::Scalar>::ReturnType;
- template <typename OtherDerived>
- using SO2Product = SO2<ReturnScalar<OtherDerived>>;
- template <typename PointDerived>
- using PointProduct = Vector2<ReturnScalar<PointDerived>>;
- template <typename HPointDerived>
- using HomogeneousPointProduct = Vector3<ReturnScalar<HPointDerived>>;
- /// Adjoint transformation
- ///
- /// This function return the adjoint transformation ``Ad`` of the group
- /// element ``A`` such that for all ``x`` it holds that
- /// ``hat(Ad_A * x) = A * hat(x) A^{-1}``. See hat-operator below.
- ///
- /// It simply ``1``, since ``SO(2)`` is a commutative group.
- ///
- SOPHUS_FUNC Adjoint Adj() const { return Scalar(1); }
- /// Returns copy of instance casted to NewScalarType.
- ///
- template <class NewScalarType>
- SOPHUS_FUNC SO2<NewScalarType> cast() const {
- return SO2<NewScalarType>(unit_complex().template cast<NewScalarType>());
- }
- /// This provides unsafe read/write access to internal data. SO(2) is
- /// represented by a unit complex number (two parameters). When using direct
- /// write access, the user needs to take care of that the complex number stays
- /// normalized.
- ///
- SOPHUS_FUNC Scalar* data() { return unit_complex_nonconst().data(); }
- /// Const version of data() above.
- ///
- SOPHUS_FUNC Scalar const* data() const { return unit_complex().data(); }
- /// Returns group inverse.
- ///
- SOPHUS_FUNC SO2<Scalar> inverse() const {
- return SO2<Scalar>(unit_complex().x(), -unit_complex().y());
- }
- /// Logarithmic map
- ///
- /// Computes the logarithm, the inverse of the group exponential which maps
- /// element of the group (rotation matrices) to elements of the tangent space
- /// (rotation angles).
- ///
- /// To be specific, this function computes ``vee(logmat(.))`` with
- /// ``logmat(.)`` being the matrix logarithm and ``vee(.)`` the vee-operator
- /// of SO(2).
- ///
- SOPHUS_FUNC Scalar log() const {
- using std::atan2;
- return atan2(unit_complex().y(), unit_complex().x());
- }
- /// It re-normalizes ``unit_complex`` to unit length.
- ///
- /// Note: Because of the class invariant, there is typically no need to call
- /// this function directly.
- ///
- SOPHUS_FUNC void normalize() {
- using std::sqrt;
- Scalar length = sqrt(unit_complex().x() * unit_complex().x() +
- unit_complex().y() * unit_complex().y());
- SOPHUS_ENSURE(length >= Constants<Scalar>::epsilon(),
- "Complex number should not be close to zero!");
- unit_complex_nonconst().x() /= length;
- unit_complex_nonconst().y() /= length;
- }
- /// Returns 2x2 matrix representation of the instance.
- ///
- /// For SO(2), the matrix representation is an orthogonal matrix ``R`` with
- /// ``det(R)=1``, thus the so-called "rotation matrix".
- ///
- SOPHUS_FUNC Transformation matrix() const {
- Scalar const& real = unit_complex().x();
- Scalar const& imag = unit_complex().y();
- Transformation R;
- // clang-format off
- R <<
- real, -imag,
- imag, real;
- // clang-format on
- return R;
- }
- /// Assignment-like operator from OtherDerived.
- ///
- template <class OtherDerived>
- SOPHUS_FUNC SO2Base<Derived>& operator=(SO2Base<OtherDerived> const& other) {
- unit_complex_nonconst() = other.unit_complex();
- return *this;
- }
- /// Group multiplication, which is rotation concatenation.
- ///
- template <typename OtherDerived>
- SOPHUS_FUNC SO2Product<OtherDerived> operator*(
- SO2Base<OtherDerived> const& other) const {
- using ResultT = ReturnScalar<OtherDerived>;
- Scalar const lhs_real = unit_complex().x();
- Scalar const lhs_imag = unit_complex().y();
- typename OtherDerived::Scalar const& rhs_real = other.unit_complex().x();
- typename OtherDerived::Scalar const& rhs_imag = other.unit_complex().y();
- // complex multiplication
- ResultT const result_real = lhs_real * rhs_real - lhs_imag * rhs_imag;
- ResultT const result_imag = lhs_real * rhs_imag + lhs_imag * rhs_real;
- ResultT const squared_norm =
- result_real * result_real + result_imag * result_imag;
- // We can assume that the squared-norm is close to 1 since we deal with a
- // unit complex number. Due to numerical precision issues, there might
- // be a small drift after pose concatenation. Hence, we need to renormalizes
- // the complex number here.
- // Since squared-norm is close to 1, we do not need to calculate the costly
- // square-root, but can use an approximation around 1 (see
- // http://stackoverflow.com/a/12934750 for details).
- if (squared_norm != ResultT(1.0)) {
- ResultT const scale = ResultT(2.0) / (ResultT(1.0) + squared_norm);
- return SO2Product<OtherDerived>(result_real * scale, result_imag * scale);
- }
- return SO2Product<OtherDerived>(result_real, result_imag);
- }
- /// Group action on 2-points.
- ///
- /// This function rotates a 2 dimensional point ``p`` by the SO2 element
- /// ``bar_R_foo`` (= rotation matrix): ``p_bar = bar_R_foo * p_foo``.
- ///
- template <typename PointDerived,
- typename = typename std::enable_if<
- IsFixedSizeVector<PointDerived, 2>::value>::type>
- SOPHUS_FUNC PointProduct<PointDerived> operator*(
- Eigen::MatrixBase<PointDerived> const& p) const {
- Scalar const& real = unit_complex().x();
- Scalar const& imag = unit_complex().y();
- return PointProduct<PointDerived>(real * p[0] - imag * p[1],
- imag * p[0] + real * p[1]);
- }
- /// Group action on homogeneous 2-points.
- ///
- /// This function rotates a homogeneous 2 dimensional point ``p`` by the SO2
- /// element ``bar_R_foo`` (= rotation matrix): ``p_bar = bar_R_foo * p_foo``.
- ///
- template <typename HPointDerived,
- typename = typename std::enable_if<
- IsFixedSizeVector<HPointDerived, 3>::value>::type>
- SOPHUS_FUNC HomogeneousPointProduct<HPointDerived> operator*(
- Eigen::MatrixBase<HPointDerived> const& p) const {
- Scalar const& real = unit_complex().x();
- Scalar const& imag = unit_complex().y();
- return HomogeneousPointProduct<HPointDerived>(
- real * p[0] - imag * p[1], imag * p[0] + real * p[1], p[2]);
- }
- /// Group action on lines.
- ///
- /// This function rotates a parametrized line ``l(t) = o + t * d`` by the SO2
- /// element:
- ///
- /// Both direction ``d`` and origin ``o`` are rotated as a 2 dimensional point
- ///
- SOPHUS_FUNC Line operator*(Line const& l) const {
- return Line((*this) * l.origin(), (*this) * l.direction());
- }
- /// In-place group multiplication. This method is only valid if the return
- /// type of the multiplication is compatible with this SO2's Scalar type.
- ///
- template <typename OtherDerived,
- typename = typename std::enable_if<
- std::is_same<Scalar, ReturnScalar<OtherDerived>>::value>::type>
- SOPHUS_FUNC SO2Base<Derived> operator*=(SO2Base<OtherDerived> const& other) {
- *static_cast<Derived*>(this) = *this * other;
- return *this;
- }
- /// Returns derivative of this * SO2::exp(x) wrt. x at x=0.
- ///
- SOPHUS_FUNC Matrix<Scalar, num_parameters, DoF> Dx_this_mul_exp_x_at_0()
- const {
- return Matrix<Scalar, num_parameters, DoF>(-unit_complex()[1],
- unit_complex()[0]);
- }
- /// Returns internal parameters of SO(2).
- ///
- /// It returns (c[0], c[1]), with c being the unit complex number.
- ///
- SOPHUS_FUNC Sophus::Vector<Scalar, num_parameters> params() const {
- return unit_complex();
- }
- /// Takes in complex number / tuple and normalizes it.
- ///
- /// Precondition: The complex number must not be close to zero.
- ///
- SOPHUS_FUNC void setComplex(Point const& complex) {
- unit_complex_nonconst() = complex;
- normalize();
- }
- /// Accessor of unit quaternion.
- ///
- SOPHUS_FUNC
- ComplexT const& unit_complex() const {
- return static_cast<Derived const*>(this)->unit_complex();
- }
- private:
- /// Mutator of unit_complex is private to ensure class invariant. That is
- /// the complex number must stay close to unit length.
- ///
- SOPHUS_FUNC
- ComplexT& unit_complex_nonconst() {
- return static_cast<Derived*>(this)->unit_complex_nonconst();
- }
- };
- /// SO2 using default storage; derived from SO2Base.
- template <class Scalar_, int Options>
- class SO2 : public SO2Base<SO2<Scalar_, Options>> {
- public:
- using Base = SO2Base<SO2<Scalar_, Options>>;
- static int constexpr DoF = Base::DoF;
- static int constexpr num_parameters = Base::num_parameters;
- using Scalar = Scalar_;
- using Transformation = typename Base::Transformation;
- using Point = typename Base::Point;
- using HomogeneousPoint = typename Base::HomogeneousPoint;
- using Tangent = typename Base::Tangent;
- using Adjoint = typename Base::Adjoint;
- using ComplexMember = Vector2<Scalar, Options>;
- /// ``Base`` is friend so unit_complex_nonconst can be accessed from ``Base``.
- friend class SO2Base<SO2<Scalar, Options>>;
- using Base::operator=;
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW
- /// Default constructor initializes unit complex number to identity rotation.
- ///
- SOPHUS_FUNC SO2() : unit_complex_(Scalar(1), Scalar(0)) {}
- /// Copy constructor
- ///
- SOPHUS_FUNC SO2(SO2 const& other) = default;
- /// Copy-like constructor from OtherDerived.
- ///
- template <class OtherDerived>
- SOPHUS_FUNC SO2(SO2Base<OtherDerived> const& other)
- : unit_complex_(other.unit_complex()) {}
- /// Constructor from rotation matrix
- ///
- /// Precondition: rotation matrix need to be orthogonal with determinant of 1.
- ///
- SOPHUS_FUNC explicit SO2(Transformation const& R)
- : unit_complex_(Scalar(0.5) * (R(0, 0) + R(1, 1)),
- Scalar(0.5) * (R(1, 0) - R(0, 1))) {
- SOPHUS_ENSURE(isOrthogonal(R), "R is not orthogonal:\n %", R);
- SOPHUS_ENSURE(R.determinant() > Scalar(0), "det(R) is not positive: %",
- R.determinant());
- }
- /// Constructor from pair of real and imaginary number.
- ///
- /// Precondition: The pair must not be close to zero.
- ///
- SOPHUS_FUNC SO2(Scalar const& real, Scalar const& imag)
- : unit_complex_(real, imag) {
- Base::normalize();
- }
- /// Constructor from 2-vector.
- ///
- /// Precondition: The vector must not be close to zero.
- ///
- template <class D>
- SOPHUS_FUNC explicit SO2(Eigen::MatrixBase<D> const& complex)
- : unit_complex_(complex) {
- static_assert(std::is_same<typename D::Scalar, Scalar>::value,
- "must be same Scalar type");
- Base::normalize();
- }
- /// Constructor from an rotation angle.
- ///
- SOPHUS_FUNC explicit SO2(Scalar theta) {
- unit_complex_nonconst() = SO2<Scalar>::exp(theta).unit_complex();
- }
- /// Accessor of unit complex number
- ///
- SOPHUS_FUNC ComplexMember const& unit_complex() const {
- return unit_complex_;
- }
- /// Group exponential
- ///
- /// This functions takes in an element of tangent space (= rotation angle
- /// ``theta``) and returns the corresponding element of the group SO(2).
- ///
- /// To be more specific, this function computes ``expmat(hat(omega))``
- /// with ``expmat(.)`` being the matrix exponential and ``hat(.)`` being the
- /// hat()-operator of SO(2).
- ///
- SOPHUS_FUNC static SO2<Scalar> exp(Tangent const& theta) {
- using std::cos;
- using std::sin;
- return SO2<Scalar>(cos(theta), sin(theta));
- }
- /// Returns derivative of exp(x) wrt. x.
- ///
- SOPHUS_FUNC static Sophus::Matrix<Scalar, num_parameters, DoF> Dx_exp_x(
- Tangent const& theta) {
- using std::cos;
- using std::sin;
- return Sophus::Matrix<Scalar, num_parameters, DoF>(-sin(theta), cos(theta));
- }
- /// Returns derivative of exp(x) wrt. x_i at x=0.
- ///
- SOPHUS_FUNC static Sophus::Matrix<Scalar, num_parameters, DoF>
- Dx_exp_x_at_0() {
- return Sophus::Matrix<Scalar, num_parameters, DoF>(Scalar(0), Scalar(1));
- }
- /// Returns derivative of exp(x).matrix() wrt. ``x_i at x=0``.
- ///
- SOPHUS_FUNC static Transformation Dxi_exp_x_matrix_at_0(int) {
- return generator();
- }
- /// Returns the infinitesimal generators of SO(2).
- ///
- /// The infinitesimal generators of SO(2) is:
- ///
- /// | 0 1 |
- /// | -1 0 |
- ///
- SOPHUS_FUNC static Transformation generator() { return hat(Scalar(1)); }
- /// hat-operator
- ///
- /// It takes in the scalar representation ``theta`` (= rotation angle) and
- /// returns the corresponding matrix representation of Lie algebra element.
- ///
- /// Formally, the hat()-operator of SO(2) is defined as
- ///
- /// ``hat(.): R^2 -> R^{2x2}, hat(theta) = theta * G``
- ///
- /// with ``G`` being the infinitesimal generator of SO(2).
- ///
- /// The corresponding inverse is the vee()-operator, see below.
- ///
- SOPHUS_FUNC static Transformation hat(Tangent const& theta) {
- Transformation Omega;
- // clang-format off
- Omega <<
- Scalar(0), -theta,
- theta, Scalar(0);
- // clang-format on
- return Omega;
- }
- /// Returns closed SO2 given arbitrary 2x2 matrix.
- ///
- template <class S = Scalar>
- static SOPHUS_FUNC enable_if_t<std::is_floating_point<S>::value, SO2>
- fitToSO2(Transformation const& R) {
- return SO2(makeRotationMatrix(R));
- }
- /// Lie bracket
- ///
- /// It returns the Lie bracket of SO(2). Since SO(2) is a commutative group,
- /// the Lie bracket is simple ``0``.
- ///
- SOPHUS_FUNC static Tangent lieBracket(Tangent const&, Tangent const&) {
- return Scalar(0);
- }
- /// Draw uniform sample from SO(2) manifold.
- ///
- template <class UniformRandomBitGenerator>
- static SO2 sampleUniform(UniformRandomBitGenerator& generator) {
- static_assert(IsUniformRandomBitGenerator<UniformRandomBitGenerator>::value,
- "generator must meet the UniformRandomBitGenerator concept");
- std::uniform_real_distribution<Scalar> uniform(-Constants<Scalar>::pi(),
- Constants<Scalar>::pi());
- return SO2(uniform(generator));
- }
- /// vee-operator
- ///
- /// It takes the 2x2-matrix representation ``Omega`` and maps it to the
- /// corresponding scalar representation of Lie algebra.
- ///
- /// This is the inverse of the hat()-operator, see above.
- ///
- /// Precondition: ``Omega`` must have the following structure:
- ///
- /// | 0 -a |
- /// | a 0 |
- ///
- SOPHUS_FUNC static Tangent vee(Transformation const& Omega) {
- using std::abs;
- return Omega(1, 0);
- }
- protected:
- /// Mutator of complex number is protected to ensure class invariant.
- ///
- SOPHUS_FUNC ComplexMember& unit_complex_nonconst() { return unit_complex_; }
- ComplexMember unit_complex_;
- };
- } // namespace Sophus
- namespace Eigen {
- /// Specialization of Eigen::Map for ``SO2``; derived from SO2Base.
- ///
- /// Allows us to wrap SO2 objects around POD array (e.g. external c style
- /// complex number / tuple).
- template <class Scalar_, int Options>
- class Map<Sophus::SO2<Scalar_>, Options>
- : public Sophus::SO2Base<Map<Sophus::SO2<Scalar_>, Options>> {
- public:
- using Base = Sophus::SO2Base<Map<Sophus::SO2<Scalar_>, Options>>;
- using Scalar = Scalar_;
- using Transformation = typename Base::Transformation;
- using Point = typename Base::Point;
- using HomogeneousPoint = typename Base::HomogeneousPoint;
- using Tangent = typename Base::Tangent;
- using Adjoint = typename Base::Adjoint;
- /// ``Base`` is friend so unit_complex_nonconst can be accessed from ``Base``.
- friend class Sophus::SO2Base<Map<Sophus::SO2<Scalar_>, Options>>;
- using Base::operator=;
- using Base::operator*=;
- using Base::operator*;
- SOPHUS_FUNC
- Map(Scalar* coeffs) : unit_complex_(coeffs) {}
- /// Accessor of unit complex number.
- ///
- SOPHUS_FUNC
- Map<Sophus::Vector2<Scalar>, Options> const& unit_complex() const {
- return unit_complex_;
- }
- protected:
- /// Mutator of unit_complex is protected to ensure class invariant.
- ///
- SOPHUS_FUNC
- Map<Sophus::Vector2<Scalar>, Options>& unit_complex_nonconst() {
- return unit_complex_;
- }
- Map<Matrix<Scalar, 2, 1>, Options> unit_complex_;
- };
- /// Specialization of Eigen::Map for ``SO2 const``; derived from SO2Base.
- ///
- /// Allows us to wrap SO2 objects around POD array (e.g. external c style
- /// complex number / tuple).
- template <class Scalar_, int Options>
- class Map<Sophus::SO2<Scalar_> const, Options>
- : public Sophus::SO2Base<Map<Sophus::SO2<Scalar_> const, Options>> {
- public:
- using Base = Sophus::SO2Base<Map<Sophus::SO2<Scalar_> const, Options>>;
- using Scalar = Scalar_;
- using Transformation = typename Base::Transformation;
- using Point = typename Base::Point;
- using HomogeneousPoint = typename Base::HomogeneousPoint;
- using Tangent = typename Base::Tangent;
- using Adjoint = typename Base::Adjoint;
- using Base::operator*=;
- using Base::operator*;
- SOPHUS_FUNC Map(Scalar const* coeffs) : unit_complex_(coeffs) {}
- /// Accessor of unit complex number.
- ///
- SOPHUS_FUNC Map<Sophus::Vector2<Scalar> const, Options> const& unit_complex()
- const {
- return unit_complex_;
- }
- protected:
- /// Mutator of unit_complex is protected to ensure class invariant.
- ///
- Map<Matrix<Scalar, 2, 1> const, Options> const unit_complex_;
- };
- } // namespace Eigen
- #endif // SOPHUS_SO2_HPP
|