1234567891011121314151617181920212223242526272829303132333435363738 |
- #include <iostream>
- #include "sophus/geometry.hpp"
- int main() {
- // The following demonstrates the group multiplication of rotation matrices
- // Create rotation matrices from rotations around the x and y and z axes:
- const double kPi = Sophus::Constants<double>::pi();
- Sophus::SO3d R1 = Sophus::SO3d::rotX(kPi / 4);
- Sophus::SO3d R2 = Sophus::SO3d::rotY(kPi / 6);
- Sophus::SO3d R3 = Sophus::SO3d::rotZ(-kPi / 3);
- std::cout << "The rotation matrices are" << std::endl;
- std::cout << "R1:\n" << R1.matrix() << std::endl;
- std::cout << "R2:\n" << R2.matrix() << std::endl;
- std::cout << "R3:\n" << R3.matrix() << std::endl;
- std::cout << "Their product R1*R2*R3:\n"
- << (R1 * R2 * R3).matrix() << std::endl;
- std::cout << std::endl;
- // Rotation matrices can act on vectors
- Eigen::Vector3d x;
- x << 0.0, 0.0, 1.0;
- std::cout << "Rotation matrices can act on vectors" << std::endl;
- std::cout << "x\n" << x << std::endl;
- std::cout << "R2*x\n" << R2 * x << std::endl;
- std::cout << "R1*(R2*x)\n" << R1 * (R2 * x) << std::endl;
- std::cout << "(R1*R2)*x\n" << (R1 * R2) * x << std::endl;
- std::cout << std::endl;
- // SO(3) are internally represented as unit quaternions.
- std::cout << "R1 in matrix form:\n" << R1.matrix() << std::endl;
- std::cout << "R1 in unit quaternion form:\n"
- << R1.unit_quaternion().coeffs() << std::endl;
- // Note that the order of coefficiences of Eigen's quaternion class is
- // (imag0, imag1, imag2, real)
- std::cout << std::endl;
- }
|