/** * This file is part of ORB-SLAM3 * * Copyright (C) 2017-2020 Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M.M. Montiel and Juan D. Tardós, University of Zaragoza. * Copyright (C) 2014-2016 Raúl Mur-Artal, José M.M. Montiel and Juan D. Tardós, University of Zaragoza. * * ORB-SLAM3 is free software: you can redistribute it and/or modify it under the terms of the GNU General Public * License as published by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * ORB-SLAM3 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even * the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with ORB-SLAM3. * If not, see <http://www.gnu.org/licenses/>. */ #include<iostream> #include<algorithm> #include<fstream> #include<iomanip> #include<chrono> #include<opencv2/core/core.hpp> #include<System.h> using namespace std; void LoadImages(const string &strPathLeft, const string &strPathRight, const string &strPathTimes, vector<string> &vstrImageLeft, vector<string> &vstrImageRight, vector<double> &vTimeStamps); int main(int argc, char **argv) { if(argc < 5) { cerr << endl << "Usage: ./stereo_euroc path_to_vocabulary path_to_settings path_to_sequence_folder_1 path_to_times_file_1 (path_to_image_folder_2 path_to_times_file_2 ... path_to_image_folder_N path_to_times_file_N) (trajectory_file_name)" << endl; return 1; } const int num_seq = (argc-3)/2; cout << "num_seq = " << num_seq << endl; bool bFileName= (((argc-3) % 2) == 1); string file_name; if (bFileName) { file_name = string(argv[argc-1]); cout << "file name: " << file_name << endl; } // Load all sequences: int seq; vector< vector<string> > vstrImageLeft; vector< vector<string> > vstrImageRight; vector< vector<double> > vTimestampsCam; vector<int> nImages; vstrImageLeft.resize(num_seq); vstrImageRight.resize(num_seq); vTimestampsCam.resize(num_seq); nImages.resize(num_seq); int tot_images = 0; for (seq = 0; seq<num_seq; seq++) { cout << "Loading images for sequence " << seq << "..."; string pathSeq(argv[(2*seq) + 3]); string pathTimeStamps(argv[(2*seq) + 4]); string pathCam0 = pathSeq + "/mav0/cam0/data"; string pathCam1 = pathSeq + "/mav0/cam1/data"; LoadImages(pathCam0, pathCam1, pathTimeStamps, vstrImageLeft[seq], vstrImageRight[seq], vTimestampsCam[seq]); cout << "LOADED!" << endl; nImages[seq] = vstrImageLeft[seq].size(); tot_images += nImages[seq]; } // Read rectification parameters cv::FileStorage fsSettings(argv[2], cv::FileStorage::READ); if(!fsSettings.isOpened()) { cerr << "ERROR: Wrong path to settings" << endl; return -1; } cv::Mat K_l, K_r, P_l, P_r, R_l, R_r, D_l, D_r; fsSettings["LEFT.K"] >> K_l; fsSettings["RIGHT.K"] >> K_r; fsSettings["LEFT.P"] >> P_l; fsSettings["RIGHT.P"] >> P_r; fsSettings["LEFT.R"] >> R_l; fsSettings["RIGHT.R"] >> R_r; fsSettings["LEFT.D"] >> D_l; fsSettings["RIGHT.D"] >> D_r; int rows_l = fsSettings["LEFT.height"]; int cols_l = fsSettings["LEFT.width"]; int rows_r = fsSettings["RIGHT.height"]; int cols_r = fsSettings["RIGHT.width"]; if(K_l.empty() || K_r.empty() || P_l.empty() || P_r.empty() || R_l.empty() || R_r.empty() || D_l.empty() || D_r.empty() || rows_l==0 || rows_r==0 || cols_l==0 || cols_r==0) { cerr << "ERROR: Calibration parameters to rectify stereo are missing!" << endl; return -1; } cv::Mat M1l,M2l,M1r,M2r; cv::initUndistortRectifyMap(K_l,D_l,R_l,P_l.rowRange(0,3).colRange(0,3),cv::Size(cols_l,rows_l),CV_32F,M1l,M2l); cv::initUndistortRectifyMap(K_r,D_r,R_r,P_r.rowRange(0,3).colRange(0,3),cv::Size(cols_r,rows_r),CV_32F,M1r,M2r); // Vector for tracking time statistics vector<float> vTimesTrack; vTimesTrack.resize(tot_images); cout << endl << "-------" << endl; cout.precision(17); // Create SLAM system. It initializes all system threads and gets ready to process frames. ORB_SLAM3::System SLAM(argv[1],argv[2],ORB_SLAM3::System::STEREO, true); cv::Mat imLeft, imRight, imLeftRect, imRightRect; for (seq = 0; seq<num_seq; seq++) { // Seq loop double t_rect = 0; int num_rect = 0; int proccIm = 0; for(int ni=0; ni<nImages[seq]; ni++, proccIm++) { // Read left and right images from file imLeft = cv::imread(vstrImageLeft[seq][ni],cv::IMREAD_UNCHANGED); imRight = cv::imread(vstrImageRight[seq][ni],cv::IMREAD_UNCHANGED); if(imLeft.empty()) { cerr << endl << "Failed to load image at: " << string(vstrImageLeft[seq][ni]) << endl; return 1; } if(imRight.empty()) { cerr << endl << "Failed to load image at: " << string(vstrImageRight[seq][ni]) << endl; return 1; } #ifdef COMPILEDWITHC11 std::chrono::steady_clock::time_point t_Start_Rect = std::chrono::steady_clock::now(); #else std::chrono::monotonic_clock::time_point t_Start_Rect = std::chrono::monotonic_clock::now(); #endif cv::remap(imLeft,imLeftRect,M1l,M2l,cv::INTER_LINEAR); cv::remap(imRight,imRightRect,M1r,M2r,cv::INTER_LINEAR); #ifdef COMPILEDWITHC11 std::chrono::steady_clock::time_point t_End_Rect = std::chrono::steady_clock::now(); #else std::chrono::monotonic_clock::time_point t_End_Rect = std::chrono::monotonic_clock::now(); #endif t_rect = std::chrono::duration_cast<std::chrono::duration<double> >(t_End_Rect - t_Start_Rect).count(); double tframe = vTimestampsCam[seq][ni]; #ifdef COMPILEDWITHC11 std::chrono::steady_clock::time_point t1 = std::chrono::steady_clock::now(); #else std::chrono::monotonic_clock::time_point t1 = std::chrono::monotonic_clock::now(); #endif // Pass the images to the SLAM system SLAM.TrackStereo(imLeftRect,imRightRect,tframe, vector<ORB_SLAM3::IMU::Point>(), vstrImageLeft[seq][ni]); #ifdef COMPILEDWITHC11 std::chrono::steady_clock::time_point t2 = std::chrono::steady_clock::now(); #else std::chrono::monotonic_clock::time_point t2 = std::chrono::monotonic_clock::now(); #endif double ttrack= std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count(); vTimesTrack[ni]=ttrack; // Wait to load the next frame double T=0; if(ni<nImages[seq]-1) T = vTimestampsCam[seq][ni+1]-tframe; else if(ni>0) T = tframe-vTimestampsCam[seq][ni-1]; if(ttrack<T) usleep((T-ttrack)*1e6); // 1e6 } if(seq < num_seq - 1) { cout << "Changing the dataset" << endl; SLAM.ChangeDataset(); } } // Stop all threads SLAM.Shutdown(); // Save camera trajectory if (bFileName) { const string kf_file = "kf_" + string(argv[argc-1]) + ".txt"; const string f_file = "f_" + string(argv[argc-1]) + ".txt"; SLAM.SaveTrajectoryEuRoC(f_file); SLAM.SaveKeyFrameTrajectoryEuRoC(kf_file); } else { SLAM.SaveTrajectoryEuRoC("CameraTrajectory.txt"); SLAM.SaveKeyFrameTrajectoryEuRoC("KeyFrameTrajectory.txt"); } return 0; } void LoadImages(const string &strPathLeft, const string &strPathRight, const string &strPathTimes, vector<string> &vstrImageLeft, vector<string> &vstrImageRight, vector<double> &vTimeStamps) { ifstream fTimes; fTimes.open(strPathTimes.c_str()); vTimeStamps.reserve(5000); vstrImageLeft.reserve(5000); vstrImageRight.reserve(5000); while(!fTimes.eof()) { string s; getline(fTimes,s); if(!s.empty()) { stringstream ss; ss << s; vstrImageLeft.push_back(strPathLeft + "/" + ss.str() + ".png"); vstrImageRight.push_back(strPathRight + "/" + ss.str() + ".png"); double t; ss >> t; vTimeStamps.push_back(t/1e9); } } }