/// @file /// Similarity group Sim(3) - scaling, rotation and translation in 3d. #ifndef SOPHUS_SIM3_HPP #define SOPHUS_SIM3_HPP #include "rxso3.hpp" #include "sim_details.hpp" namespace Sophus { template <class Scalar_, int Options = 0> class Sim3; using Sim3d = Sim3<double>; using Sim3f = Sim3<float>; } // namespace Sophus namespace Eigen { namespace internal { template <class Scalar_, int Options> struct traits<Sophus::Sim3<Scalar_, Options>> { using Scalar = Scalar_; using TranslationType = Sophus::Vector3<Scalar, Options>; using RxSO3Type = Sophus::RxSO3<Scalar, Options>; }; template <class Scalar_, int Options> struct traits<Map<Sophus::Sim3<Scalar_>, Options>> : traits<Sophus::Sim3<Scalar_, Options>> { using Scalar = Scalar_; using TranslationType = Map<Sophus::Vector3<Scalar>, Options>; using RxSO3Type = Map<Sophus::RxSO3<Scalar>, Options>; }; template <class Scalar_, int Options> struct traits<Map<Sophus::Sim3<Scalar_> const, Options>> : traits<Sophus::Sim3<Scalar_, Options> const> { using Scalar = Scalar_; using TranslationType = Map<Sophus::Vector3<Scalar> const, Options>; using RxSO3Type = Map<Sophus::RxSO3<Scalar> const, Options>; }; } // namespace internal } // namespace Eigen namespace Sophus { /// Sim3 base type - implements Sim3 class but is storage agnostic. /// /// Sim(3) is the group of rotations and translation and scaling in 3d. It is /// the semi-direct product of R+xSO(3) and the 3d Euclidean vector space. The /// class is represented using a composition of RxSO3 for scaling plus /// rotation and a 3-vector for translation. /// /// Sim(3) is neither compact, nor a commutative group. /// /// See RxSO3 for more details of the scaling + rotation representation in 3d. /// template <class Derived> class Sim3Base { public: using Scalar = typename Eigen::internal::traits<Derived>::Scalar; using TranslationType = typename Eigen::internal::traits<Derived>::TranslationType; using RxSO3Type = typename Eigen::internal::traits<Derived>::RxSO3Type; using QuaternionType = typename RxSO3Type::QuaternionType; /// Degrees of freedom of manifold, number of dimensions in tangent space /// (three for translation, three for rotation and one for scaling). static int constexpr DoF = 7; /// Number of internal parameters used (4-tuple for quaternion, three for /// translation). static int constexpr num_parameters = 7; /// Group transformations are 4x4 matrices. static int constexpr N = 4; using Transformation = Matrix<Scalar, N, N>; using Point = Vector3<Scalar>; using HomogeneousPoint = Vector4<Scalar>; using Line = ParametrizedLine3<Scalar>; using Tangent = Vector<Scalar, DoF>; using Adjoint = Matrix<Scalar, DoF, DoF>; /// For binary operations the return type is determined with the /// ScalarBinaryOpTraits feature of Eigen. This allows mixing concrete and Map /// types, as well as other compatible scalar types such as Ceres::Jet and /// double scalars with Sim3 operations. template <typename OtherDerived> using ReturnScalar = typename Eigen::ScalarBinaryOpTraits< Scalar, typename OtherDerived::Scalar>::ReturnType; template <typename OtherDerived> using Sim3Product = Sim3<ReturnScalar<OtherDerived>>; template <typename PointDerived> using PointProduct = Vector3<ReturnScalar<PointDerived>>; template <typename HPointDerived> using HomogeneousPointProduct = Vector4<ReturnScalar<HPointDerived>>; /// Adjoint transformation /// /// This function return the adjoint transformation ``Ad`` of the group /// element ``A`` such that for all ``x`` it holds that /// ``hat(Ad_A * x) = A * hat(x) A^{-1}``. See hat-operator below. /// SOPHUS_FUNC Adjoint Adj() const { Matrix3<Scalar> const R = rxso3().rotationMatrix(); Adjoint res; res.setZero(); res.template block<3, 3>(0, 0) = rxso3().matrix(); res.template block<3, 3>(0, 3) = SO3<Scalar>::hat(translation()) * R; res.template block<3, 1>(0, 6) = -translation(); res.template block<3, 3>(3, 3) = R; res(6, 6) = Scalar(1); return res; } /// Returns copy of instance casted to NewScalarType. /// template <class NewScalarType> SOPHUS_FUNC Sim3<NewScalarType> cast() const { return Sim3<NewScalarType>(rxso3().template cast<NewScalarType>(), translation().template cast<NewScalarType>()); } /// Returns group inverse. /// SOPHUS_FUNC Sim3<Scalar> inverse() const { RxSO3<Scalar> invR = rxso3().inverse(); return Sim3<Scalar>(invR, invR * (translation() * Scalar(-1))); } /// Logarithmic map /// /// Computes the logarithm, the inverse of the group exponential which maps /// element of the group (rigid body transformations) to elements of the /// tangent space (twist). /// /// To be specific, this function computes ``vee(logmat(.))`` with /// ``logmat(.)`` being the matrix logarithm and ``vee(.)`` the vee-operator /// of Sim(3). /// SOPHUS_FUNC Tangent log() const { // The derivation of the closed-form Sim(3) logarithm for is done // analogously to the closed-form solution of the SE(3) logarithm, see // J. Gallier, D. Xu, "Computing exponentials of skew symmetric matrices // and logarithms of orthogonal matrices", IJRA 2002. // https:///pdfs.semanticscholar.org/cfe3/e4b39de63c8cabd89bf3feff7f5449fc981d.pdf // (Sec. 6., pp. 8) Tangent res; auto omega_sigma_and_theta = rxso3().logAndTheta(); Vector3<Scalar> const omega = omega_sigma_and_theta.tangent.template head<3>(); Scalar sigma = omega_sigma_and_theta.tangent[3]; Matrix3<Scalar> const Omega = SO3<Scalar>::hat(omega); Matrix3<Scalar> const W_inv = details::calcWInv<Scalar, 3>( Omega, omega_sigma_and_theta.theta, sigma, scale()); res.segment(0, 3) = W_inv * translation(); res.segment(3, 3) = omega; res[6] = sigma; return res; } /// Returns 4x4 matrix representation of the instance. /// /// It has the following form: /// /// | s*R t | /// | o 1 | /// /// where ``R`` is a 3x3 rotation matrix, ``s`` a scale factor, ``t`` a /// translation 3-vector and ``o`` a 3-column vector of zeros. /// SOPHUS_FUNC Transformation matrix() const { Transformation homogenious_matrix; homogenious_matrix.template topLeftCorner<3, 4>() = matrix3x4(); homogenious_matrix.row(3) = Matrix<Scalar, 4, 1>(Scalar(0), Scalar(0), Scalar(0), Scalar(1)); return homogenious_matrix; } /// Returns the significant first three rows of the matrix above. /// SOPHUS_FUNC Matrix<Scalar, 3, 4> matrix3x4() const { Matrix<Scalar, 3, 4> matrix; matrix.template topLeftCorner<3, 3>() = rxso3().matrix(); matrix.col(3) = translation(); return matrix; } /// Assignment-like operator from OtherDerived. /// template <class OtherDerived> SOPHUS_FUNC Sim3Base<Derived>& operator=( Sim3Base<OtherDerived> const& other) { rxso3() = other.rxso3(); translation() = other.translation(); return *this; } /// Group multiplication, which is rotation plus scaling concatenation. /// /// Note: That scaling is calculated with saturation. See RxSO3 for /// details. /// template <typename OtherDerived> SOPHUS_FUNC Sim3Product<OtherDerived> operator*( Sim3Base<OtherDerived> const& other) const { return Sim3Product<OtherDerived>( rxso3() * other.rxso3(), translation() + rxso3() * other.translation()); } /// Group action on 3-points. /// /// This function rotates, scales and translates a three dimensional point /// ``p`` by the Sim(3) element ``(bar_sR_foo, t_bar)`` (= similarity /// transformation): /// /// ``p_bar = bar_sR_foo * p_foo + t_bar``. /// template <typename PointDerived, typename = typename std::enable_if< IsFixedSizeVector<PointDerived, 3>::value>::type> SOPHUS_FUNC PointProduct<PointDerived> operator*( Eigen::MatrixBase<PointDerived> const& p) const { return rxso3() * p + translation(); } /// Group action on homogeneous 3-points. See above for more details. /// template <typename HPointDerived, typename = typename std::enable_if< IsFixedSizeVector<HPointDerived, 4>::value>::type> SOPHUS_FUNC HomogeneousPointProduct<HPointDerived> operator*( Eigen::MatrixBase<HPointDerived> const& p) const { const PointProduct<HPointDerived> tp = rxso3() * p.template head<3>() + p(3) * translation(); return HomogeneousPointProduct<HPointDerived>(tp(0), tp(1), tp(2), p(3)); } /// Group action on lines. /// /// This function rotates, scales and translates a parametrized line /// ``l(t) = o + t * d`` by the Sim(3) element: /// /// Origin ``o`` is rotated, scaled and translated /// Direction ``d`` is rotated /// SOPHUS_FUNC Line operator*(Line const& l) const { Line rotatedLine = rxso3() * l; return Line(rotatedLine.origin() + translation(), rotatedLine.direction()); } /// In-place group multiplication. This method is only valid if the return /// type of the multiplication is compatible with this SO3's Scalar type. /// template <typename OtherDerived, typename = typename std::enable_if< std::is_same<Scalar, ReturnScalar<OtherDerived>>::value>::type> SOPHUS_FUNC Sim3Base<Derived>& operator*=( Sim3Base<OtherDerived> const& other) { *static_cast<Derived*>(this) = *this * other; return *this; } /// Returns internal parameters of Sim(3). /// /// It returns (q.imag[0], q.imag[1], q.imag[2], q.real, t[0], t[1], t[2]), /// with q being the quaternion, t the translation 3-vector. /// SOPHUS_FUNC Sophus::Vector<Scalar, num_parameters> params() const { Sophus::Vector<Scalar, num_parameters> p; p << rxso3().params(), translation(); return p; } /// Setter of non-zero quaternion. /// /// Precondition: ``quat`` must not be close to zero. /// SOPHUS_FUNC void setQuaternion(Eigen::Quaternion<Scalar> const& quat) { rxso3().setQuaternion(quat); } /// Accessor of quaternion. /// SOPHUS_FUNC QuaternionType const& quaternion() const { return rxso3().quaternion(); } /// Returns Rotation matrix /// SOPHUS_FUNC Matrix3<Scalar> rotationMatrix() const { return rxso3().rotationMatrix(); } /// Mutator of SO3 group. /// SOPHUS_FUNC RxSO3Type& rxso3() { return static_cast<Derived*>(this)->rxso3(); } /// Accessor of SO3 group. /// SOPHUS_FUNC RxSO3Type const& rxso3() const { return static_cast<Derived const*>(this)->rxso3(); } /// Returns scale. /// SOPHUS_FUNC Scalar scale() const { return rxso3().scale(); } /// Setter of quaternion using rotation matrix ``R``, leaves scale as is. /// SOPHUS_FUNC void setRotationMatrix(Matrix3<Scalar>& R) { rxso3().setRotationMatrix(R); } /// Sets scale and leaves rotation as is. /// /// Note: This function as a significant computational cost, since it has to /// call the square root twice. /// SOPHUS_FUNC void setScale(Scalar const& scale) { rxso3().setScale(scale); } /// Setter of quaternion using scaled rotation matrix ``sR``. /// /// Precondition: The 3x3 matrix must be "scaled orthogonal" /// and have a positive determinant. /// SOPHUS_FUNC void setScaledRotationMatrix(Matrix3<Scalar> const& sR) { rxso3().setScaledRotationMatrix(sR); } /// Mutator of translation vector /// SOPHUS_FUNC TranslationType& translation() { return static_cast<Derived*>(this)->translation(); } /// Accessor of translation vector /// SOPHUS_FUNC TranslationType const& translation() const { return static_cast<Derived const*>(this)->translation(); } }; /// Sim3 using default storage; derived from Sim3Base. template <class Scalar_, int Options> class Sim3 : public Sim3Base<Sim3<Scalar_, Options>> { public: using Base = Sim3Base<Sim3<Scalar_, Options>>; using Scalar = Scalar_; using Transformation = typename Base::Transformation; using Point = typename Base::Point; using HomogeneousPoint = typename Base::HomogeneousPoint; using Tangent = typename Base::Tangent; using Adjoint = typename Base::Adjoint; using RxSo3Member = RxSO3<Scalar, Options>; using TranslationMember = Vector3<Scalar, Options>; using Base::operator=; EIGEN_MAKE_ALIGNED_OPERATOR_NEW /// Default constructor initializes similarity transform to the identity. /// SOPHUS_FUNC Sim3(); /// Copy constructor /// SOPHUS_FUNC Sim3(Sim3 const& other) = default; /// Copy-like constructor from OtherDerived. /// template <class OtherDerived> SOPHUS_FUNC Sim3(Sim3Base<OtherDerived> const& other) : rxso3_(other.rxso3()), translation_(other.translation()) { static_assert(std::is_same<typename OtherDerived::Scalar, Scalar>::value, "must be same Scalar type"); } /// Constructor from RxSO3 and translation vector /// template <class OtherDerived, class D> SOPHUS_FUNC Sim3(RxSO3Base<OtherDerived> const& rxso3, Eigen::MatrixBase<D> const& translation) : rxso3_(rxso3), translation_(translation) { static_assert(std::is_same<typename OtherDerived::Scalar, Scalar>::value, "must be same Scalar type"); static_assert(std::is_same<typename D::Scalar, Scalar>::value, "must be same Scalar type"); } /// Constructor from quaternion and translation vector. /// /// Precondition: quaternion must not be close to zero. /// template <class D1, class D2> SOPHUS_FUNC Sim3(Eigen::QuaternionBase<D1> const& quaternion, Eigen::MatrixBase<D2> const& translation) : rxso3_(quaternion), translation_(translation) { static_assert(std::is_same<typename D1::Scalar, Scalar>::value, "must be same Scalar type"); static_assert(std::is_same<typename D2::Scalar, Scalar>::value, "must be same Scalar type"); } /// Constructor from 4x4 matrix /// /// Precondition: Top-left 3x3 matrix needs to be "scaled-orthogonal" with /// positive determinant. The last row must be ``(0, 0, 0, 1)``. /// SOPHUS_FUNC explicit Sim3(Matrix<Scalar, 4, 4> const& T) : rxso3_(T.template topLeftCorner<3, 3>()), translation_(T.template block<3, 1>(0, 3)) {} /// This provides unsafe read/write access to internal data. Sim(3) is /// represented by an Eigen::Quaternion (four parameters) and a 3-vector. When /// using direct write access, the user needs to take care of that the /// quaternion is not set close to zero. /// SOPHUS_FUNC Scalar* data() { // rxso3_ and translation_ are laid out sequentially with no padding return rxso3_.data(); } /// Const version of data() above. /// SOPHUS_FUNC Scalar const* data() const { // rxso3_ and translation_ are laid out sequentially with no padding return rxso3_.data(); } /// Accessor of RxSO3 /// SOPHUS_FUNC RxSo3Member& rxso3() { return rxso3_; } /// Mutator of RxSO3 /// SOPHUS_FUNC RxSo3Member const& rxso3() const { return rxso3_; } /// Mutator of translation vector /// SOPHUS_FUNC TranslationMember& translation() { return translation_; } /// Accessor of translation vector /// SOPHUS_FUNC TranslationMember const& translation() const { return translation_; } /// Returns derivative of exp(x).matrix() wrt. ``x_i at x=0``. /// SOPHUS_FUNC static Transformation Dxi_exp_x_matrix_at_0(int i) { return generator(i); } /// Group exponential /// /// This functions takes in an element of tangent space and returns the /// corresponding element of the group Sim(3). /// /// The first three components of ``a`` represent the translational part /// ``upsilon`` in the tangent space of Sim(3), the following three components /// of ``a`` represents the rotation vector ``omega`` and the final component /// represents the logarithm of the scaling factor ``sigma``. /// To be more specific, this function computes ``expmat(hat(a))`` with /// ``expmat(.)`` being the matrix exponential and ``hat(.)`` the hat-operator /// of Sim(3), see below. /// SOPHUS_FUNC static Sim3<Scalar> exp(Tangent const& a) { // For the derivation of the exponential map of Sim(3) see // H. Strasdat, "Local Accuracy and Global Consistency for Efficient Visual // SLAM", PhD thesis, 2012. // http:///hauke.strasdat.net/files/strasdat_thesis_2012.pdf (A.5, pp. 186) Vector3<Scalar> const upsilon = a.segment(0, 3); Vector3<Scalar> const omega = a.segment(3, 3); Scalar const sigma = a[6]; Scalar theta; RxSO3<Scalar> rxso3 = RxSO3<Scalar>::expAndTheta(a.template tail<4>(), &theta); Matrix3<Scalar> const Omega = SO3<Scalar>::hat(omega); Matrix3<Scalar> const W = details::calcW<Scalar, 3>(Omega, theta, sigma); return Sim3<Scalar>(rxso3, W * upsilon); } /// Returns the ith infinitesimal generators of Sim(3). /// /// The infinitesimal generators of Sim(3) are: /// /// ``` /// | 0 0 0 1 | /// G_0 = | 0 0 0 0 | /// | 0 0 0 0 | /// | 0 0 0 0 | /// /// | 0 0 0 0 | /// G_1 = | 0 0 0 1 | /// | 0 0 0 0 | /// | 0 0 0 0 | /// /// | 0 0 0 0 | /// G_2 = | 0 0 0 0 | /// | 0 0 0 1 | /// | 0 0 0 0 | /// /// | 0 0 0 0 | /// G_3 = | 0 0 -1 0 | /// | 0 1 0 0 | /// | 0 0 0 0 | /// /// | 0 0 1 0 | /// G_4 = | 0 0 0 0 | /// | -1 0 0 0 | /// | 0 0 0 0 | /// /// | 0 -1 0 0 | /// G_5 = | 1 0 0 0 | /// | 0 0 0 0 | /// | 0 0 0 0 | /// /// | 1 0 0 0 | /// G_6 = | 0 1 0 0 | /// | 0 0 1 0 | /// | 0 0 0 0 | /// ``` /// /// Precondition: ``i`` must be in [0, 6]. /// SOPHUS_FUNC static Transformation generator(int i) { SOPHUS_ENSURE(i >= 0 || i <= 6, "i should be in range [0,6]."); Tangent e; e.setZero(); e[i] = Scalar(1); return hat(e); } /// hat-operator /// /// It takes in the 7-vector representation and returns the corresponding /// matrix representation of Lie algebra element. /// /// Formally, the hat()-operator of Sim(3) is defined as /// /// ``hat(.): R^7 -> R^{4x4}, hat(a) = sum_i a_i * G_i`` (for i=0,...,6) /// /// with ``G_i`` being the ith infinitesimal generator of Sim(3). /// /// The corresponding inverse is the vee()-operator, see below. /// SOPHUS_FUNC static Transformation hat(Tangent const& a) { Transformation Omega; Omega.template topLeftCorner<3, 3>() = RxSO3<Scalar>::hat(a.template tail<4>()); Omega.col(3).template head<3>() = a.template head<3>(); Omega.row(3).setZero(); return Omega; } /// Lie bracket /// /// It computes the Lie bracket of Sim(3). To be more specific, it computes /// /// ``[omega_1, omega_2]_sim3 := vee([hat(omega_1), hat(omega_2)])`` /// /// with ``[A,B] := AB-BA`` being the matrix commutator, ``hat(.)`` the /// hat()-operator and ``vee(.)`` the vee()-operator of Sim(3). /// SOPHUS_FUNC static Tangent lieBracket(Tangent const& a, Tangent const& b) { Vector3<Scalar> const upsilon1 = a.template head<3>(); Vector3<Scalar> const upsilon2 = b.template head<3>(); Vector3<Scalar> const omega1 = a.template segment<3>(3); Vector3<Scalar> const omega2 = b.template segment<3>(3); Scalar sigma1 = a[6]; Scalar sigma2 = b[6]; Tangent res; res.template head<3>() = SO3<Scalar>::hat(omega1) * upsilon2 + SO3<Scalar>::hat(upsilon1) * omega2 + sigma1 * upsilon2 - sigma2 * upsilon1; res.template segment<3>(3) = omega1.cross(omega2); res[6] = Scalar(0); return res; } /// Draw uniform sample from Sim(3) manifold. /// /// Translations are drawn component-wise from the range [-1, 1]. /// The scale factor is drawn uniformly in log2-space from [-1, 1], /// hence the scale is in [0.5, 2]. /// template <class UniformRandomBitGenerator> static Sim3 sampleUniform(UniformRandomBitGenerator& generator) { std::uniform_real_distribution<Scalar> uniform(Scalar(-1), Scalar(1)); return Sim3(RxSO3<Scalar>::sampleUniform(generator), Vector3<Scalar>(uniform(generator), uniform(generator), uniform(generator))); } /// vee-operator /// /// It takes the 4x4-matrix representation ``Omega`` and maps it to the /// corresponding 7-vector representation of Lie algebra. /// /// This is the inverse of the hat()-operator, see above. /// /// Precondition: ``Omega`` must have the following structure: /// /// | g -f e a | /// | f g -d b | /// | -e d g c | /// | 0 0 0 0 | /// SOPHUS_FUNC static Tangent vee(Transformation const& Omega) { Tangent upsilon_omega_sigma; upsilon_omega_sigma.template head<3>() = Omega.col(3).template head<3>(); upsilon_omega_sigma.template tail<4>() = RxSO3<Scalar>::vee(Omega.template topLeftCorner<3, 3>()); return upsilon_omega_sigma; } protected: RxSo3Member rxso3_; TranslationMember translation_; }; template <class Scalar, int Options> Sim3<Scalar, Options>::Sim3() : translation_(TranslationMember::Zero()) { static_assert(std::is_standard_layout<Sim3>::value, "Assume standard layout for the use of offsetof check below."); static_assert( offsetof(Sim3, rxso3_) + sizeof(Scalar) * RxSO3<Scalar>::num_parameters == offsetof(Sim3, translation_), "This class assumes packed storage and hence will only work " "correctly depending on the compiler (options) - in " "particular when using [this->data(), this-data() + " "num_parameters] to access the raw data in a contiguous fashion."); } } // namespace Sophus namespace Eigen { /// Specialization of Eigen::Map for ``Sim3``; derived from Sim3Base. /// /// Allows us to wrap Sim3 objects around POD array. template <class Scalar_, int Options> class Map<Sophus::Sim3<Scalar_>, Options> : public Sophus::Sim3Base<Map<Sophus::Sim3<Scalar_>, Options>> { public: using Base = Sophus::Sim3Base<Map<Sophus::Sim3<Scalar_>, Options>>; using Scalar = Scalar_; using Transformation = typename Base::Transformation; using Point = typename Base::Point; using HomogeneousPoint = typename Base::HomogeneousPoint; using Tangent = typename Base::Tangent; using Adjoint = typename Base::Adjoint; using Base::operator=; using Base::operator*=; using Base::operator*; SOPHUS_FUNC Map(Scalar* coeffs) : rxso3_(coeffs), translation_(coeffs + Sophus::RxSO3<Scalar>::num_parameters) {} /// Mutator of RxSO3 /// SOPHUS_FUNC Map<Sophus::RxSO3<Scalar>, Options>& rxso3() { return rxso3_; } /// Accessor of RxSO3 /// SOPHUS_FUNC Map<Sophus::RxSO3<Scalar>, Options> const& rxso3() const { return rxso3_; } /// Mutator of translation vector /// SOPHUS_FUNC Map<Sophus::Vector3<Scalar>, Options>& translation() { return translation_; } /// Accessor of translation vector SOPHUS_FUNC Map<Sophus::Vector3<Scalar>, Options> const& translation() const { return translation_; } protected: Map<Sophus::RxSO3<Scalar>, Options> rxso3_; Map<Sophus::Vector3<Scalar>, Options> translation_; }; /// Specialization of Eigen::Map for ``Sim3 const``; derived from Sim3Base. /// /// Allows us to wrap RxSO3 objects around POD array. template <class Scalar_, int Options> class Map<Sophus::Sim3<Scalar_> const, Options> : public Sophus::Sim3Base<Map<Sophus::Sim3<Scalar_> const, Options>> { using Base = Sophus::Sim3Base<Map<Sophus::Sim3<Scalar_> const, Options>>; public: using Scalar = Scalar_; using Transformation = typename Base::Transformation; using Point = typename Base::Point; using HomogeneousPoint = typename Base::HomogeneousPoint; using Tangent = typename Base::Tangent; using Adjoint = typename Base::Adjoint; using Base::operator*=; using Base::operator*; SOPHUS_FUNC Map(Scalar const* coeffs) : rxso3_(coeffs), translation_(coeffs + Sophus::RxSO3<Scalar>::num_parameters) {} /// Accessor of RxSO3 /// SOPHUS_FUNC Map<Sophus::RxSO3<Scalar> const, Options> const& rxso3() const { return rxso3_; } /// Accessor of translation vector /// SOPHUS_FUNC Map<Sophus::Vector3<Scalar> const, Options> const& translation() const { return translation_; } protected: Map<Sophus::RxSO3<Scalar> const, Options> const rxso3_; Map<Sophus::Vector3<Scalar> const, Options> const translation_; }; } // namespace Eigen #endif