trainer.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321
  1. import math
  2. import os
  3. import sys
  4. from datetime import datetime
  5. import torch
  6. import torchvision
  7. from torch.utils.tensorboard import SummaryWriter
  8. from torchvision.models.detection import MaskRCNN_ResNet50_FPN_V2_Weights
  9. from libs.vision_libs.utils import draw_keypoints
  10. from models.wirenet.postprocess import postprocess_keypoint
  11. from torchvision.utils import draw_bounding_boxes
  12. from torchvision import transforms
  13. import matplotlib.pyplot as plt
  14. import numpy as np
  15. import matplotlib as mpl
  16. from tools.coco_utils import get_coco_api_from_dataset
  17. from tools.coco_eval import CocoEvaluator
  18. import time
  19. from models.config.config_tool import read_yaml
  20. from models.ins.maskrcnn_dataset import MaskRCNNDataset
  21. from models.keypoint.keypoint_dataset import KeypointDataset
  22. from tools import utils, presets
  23. def log_losses_to_tensorboard(writer, result, step):
  24. writer.add_scalar('Loss/classifier', result['loss_classifier'].item(), step)
  25. writer.add_scalar('Loss/box_reg', result['loss_box_reg'].item(), step)
  26. writer.add_scalar('Loss/keypoint', result['loss_keypoint'].item(), step)
  27. writer.add_scalar('Loss/objectness', result['loss_objectness'].item(), step)
  28. writer.add_scalar('Loss/rpn_box_reg', result['loss_rpn_box_reg'].item(), step)
  29. def train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq, writer, scaler=None):
  30. model.train()
  31. metric_logger = utils.MetricLogger(delimiter=" ")
  32. metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value:.6f}"))
  33. header = f"Epoch: [{epoch}]"
  34. lr_scheduler = None
  35. if epoch == 0:
  36. warmup_factor = 1.0 / 1000
  37. warmup_iters = min(1000, len(data_loader) - 1)
  38. lr_scheduler = torch.optim.lr_scheduler.LinearLR(
  39. optimizer, start_factor=warmup_factor, total_iters=warmup_iters
  40. )
  41. total_train_loss=0
  42. for batch_idx, (images, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
  43. global_step = epoch * len(data_loader) + batch_idx
  44. # print(f'images:{images}')
  45. images = list(image.to(device) for image in images)
  46. targets = [{k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in t.items()} for t in targets]
  47. with torch.cuda.amp.autocast(enabled=scaler is not None):
  48. loss_dict = model(images, targets)
  49. # print(f'loss_dict:{loss_dict}')
  50. losses = sum(loss for loss in loss_dict.values())
  51. total_train_loss += losses.item()
  52. log_losses_to_tensorboard(writer, loss_dict, global_step)
  53. # reduce losses over all GPUs for logging purposes
  54. loss_dict_reduced = utils.reduce_dict(loss_dict)
  55. losses_reduced = sum(loss for loss in loss_dict_reduced.values())
  56. loss_value = losses_reduced.item()
  57. if not math.isfinite(loss_value):
  58. print(f"Loss is {loss_value}, stopping training")
  59. print(loss_dict_reduced)
  60. sys.exit(1)
  61. optimizer.zero_grad()
  62. if scaler is not None:
  63. scaler.scale(losses).backward()
  64. scaler.step(optimizer)
  65. scaler.update()
  66. else:
  67. losses.backward()
  68. optimizer.step()
  69. if lr_scheduler is not None:
  70. lr_scheduler.step()
  71. metric_logger.update(loss=losses_reduced, **loss_dict_reduced)
  72. metric_logger.update(lr=optimizer.param_groups[0]["lr"])
  73. return metric_logger, total_train_loss
  74. cmap = plt.get_cmap("jet")
  75. norm = mpl.colors.Normalize(vmin=0.4, vmax=1.0)
  76. sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
  77. sm.set_array([])
  78. def c(x):
  79. return sm.to_rgba(x)
  80. def show_line(img, pred, epoch, writer):
  81. im = img.permute(1, 2, 0) # [512, 512, 3]
  82. writer.add_image("ori", im, epoch, dataformats="HWC")
  83. boxed_image = draw_bounding_boxes((img * 255).to(torch.uint8), pred["boxes"],
  84. colors="yellow", width=1)
  85. # plt.imshow(boxed_image.permute(1, 2, 0).detach().cpu().numpy())
  86. # plt.show()
  87. writer.add_image("boxes", boxed_image.permute(1, 2, 0), epoch, dataformats="HWC")
  88. keypoint_img = draw_keypoints((img * 255).to(torch.uint8), pred['keypoints'], colors='red', width=3)
  89. writer.add_image("output", keypoint_img, epoch)
  90. def _get_iou_types(model):
  91. model_without_ddp = model
  92. if isinstance(model, torch.nn.parallel.DistributedDataParallel):
  93. model_without_ddp = model.module
  94. iou_types = ["bbox"]
  95. if isinstance(model_without_ddp, torchvision.models.detection.MaskRCNN):
  96. iou_types.append("segm")
  97. if isinstance(model_without_ddp, torchvision.models.detection.KeypointRCNN):
  98. iou_types.append("keypoints")
  99. return iou_types
  100. def evaluate(model, data_loader, epoch, writer, device):
  101. n_threads = torch.get_num_threads()
  102. # FIXME remove this and make paste_masks_in_image run on the GPU
  103. torch.set_num_threads(1)
  104. cpu_device = torch.device("cpu")
  105. model.eval()
  106. metric_logger = utils.MetricLogger(delimiter=" ")
  107. header = "Test:"
  108. coco = get_coco_api_from_dataset(data_loader.dataset)
  109. iou_types = _get_iou_types(model)
  110. coco_evaluator = CocoEvaluator(coco, iou_types)
  111. print(f'start to evaluate!!!')
  112. for batch_idx, (images, targets) in enumerate(metric_logger.log_every(data_loader, 10, header)):
  113. images = list(img.to(device) for img in images)
  114. model_time = time.time()
  115. outputs = model(images)
  116. # print(f'outputs:{outputs}')
  117. if batch_idx == 0:
  118. show_line(images[0], outputs[0], epoch, writer)
  119. def train_cfg(model, cfg):
  120. parameters = read_yaml(cfg)
  121. print(f'train parameters:{parameters}')
  122. train(model, **parameters)
  123. def train(model, **kwargs):
  124. # 默认参数
  125. default_params = {
  126. 'dataset_path': '/path/to/dataset',
  127. 'num_classes': 2,
  128. 'num_keypoints': 2,
  129. 'opt': 'adamw',
  130. 'batch_size': 2,
  131. 'epochs': 10,
  132. 'lr': 0.005,
  133. 'momentum': 0.9,
  134. 'weight_decay': 1e-4,
  135. 'lr_step_size': 3,
  136. 'lr_gamma': 0.1,
  137. 'num_workers': 4,
  138. 'print_freq': 10,
  139. 'target_type': 'polygon',
  140. 'enable_logs': True,
  141. 'augmentation': False,
  142. 'checkpoint': None
  143. }
  144. # 更新默认参数
  145. for key, value in kwargs.items():
  146. if key in default_params:
  147. default_params[key] = value
  148. else:
  149. raise ValueError(f"Unknown argument: {key}")
  150. # 解析参数
  151. dataset_path = default_params['dataset_path']
  152. num_classes = default_params['num_classes']
  153. batch_size = default_params['batch_size']
  154. epochs = default_params['epochs']
  155. lr = default_params['lr']
  156. momentum = default_params['momentum']
  157. weight_decay = default_params['weight_decay']
  158. lr_step_size = default_params['lr_step_size']
  159. lr_gamma = default_params['lr_gamma']
  160. num_workers = default_params['num_workers']
  161. print_freq = default_params['print_freq']
  162. target_type = default_params['target_type']
  163. augmentation = default_params['augmentation']
  164. # 设置设备
  165. device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
  166. train_result_ptath = os.path.join('train_results', datetime.now().strftime("%Y%m%d_%H%M%S"))
  167. wts_path = os.path.join(train_result_ptath, 'weights')
  168. tb_path = os.path.join(train_result_ptath, 'logs')
  169. writer = SummaryWriter(tb_path)
  170. transforms = None
  171. # default_transforms = MaskRCNN_ResNet50_FPN_V2_Weights.DEFAULT.transforms()
  172. if augmentation:
  173. transforms = get_transform(is_train=True)
  174. print(f'transforms:{transforms}')
  175. if not os.path.exists('train_results'):
  176. os.mkdir('train_results')
  177. model.to(device)
  178. optimizer = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=weight_decay)
  179. dataset = KeypointDataset(dataset_path=dataset_path,
  180. transforms=transforms, dataset_type='train', target_type=target_type)
  181. dataset_test = KeypointDataset(dataset_path=dataset_path, transforms=None,
  182. dataset_type='val')
  183. train_sampler = torch.utils.data.RandomSampler(dataset)
  184. test_sampler = torch.utils.data.RandomSampler(dataset_test)
  185. train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, batch_size, drop_last=True)
  186. train_collate_fn = utils.collate_fn
  187. data_loader = torch.utils.data.DataLoader(
  188. dataset, batch_sampler=train_batch_sampler, num_workers=num_workers, collate_fn=train_collate_fn
  189. )
  190. data_loader_test = torch.utils.data.DataLoader(
  191. dataset_test, batch_size=1, sampler=test_sampler, num_workers=num_workers, collate_fn=utils.collate_fn
  192. )
  193. img_results_path = os.path.join(train_result_ptath, 'img_results')
  194. if os.path.exists(train_result_ptath):
  195. pass
  196. # os.remove(train_result_ptath)
  197. else:
  198. os.mkdir(train_result_ptath)
  199. if os.path.exists(train_result_ptath):
  200. os.mkdir(wts_path)
  201. os.mkdir(img_results_path)
  202. for epoch in range(epochs):
  203. metric_logger, total_train_loss = train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq, writer, None)
  204. losses = metric_logger.meters['loss'].global_avg
  205. print(f'epoch {epoch}:loss:{losses}')
  206. if os.path.exists(f'{wts_path}/last.pt'):
  207. os.remove(f'{wts_path}/last.pt')
  208. torch.save(model.state_dict(), f'{wts_path}/last.pt')
  209. # write_metric_logs(epoch, metric_logger, writer)
  210. if epoch == 0:
  211. best_loss = losses;
  212. if best_loss >= losses:
  213. best_loss = losses
  214. if os.path.exists(f'{wts_path}/best.pt'):
  215. os.remove(f'{wts_path}/best.pt')
  216. torch.save(model.state_dict(), f'{wts_path}/best.pt')
  217. evaluate(model, data_loader_test, epoch, writer, device=device)
  218. avg_train_loss = total_train_loss / len(data_loader)
  219. writer.add_scalar('Loss/train', avg_train_loss, epoch)
  220. def get_transform(is_train, **kwargs):
  221. default_params = {
  222. 'augmentation': 'multiscale',
  223. 'backend': 'tensor',
  224. 'use_v2': False,
  225. }
  226. # 更新默认参数
  227. for key, value in kwargs.items():
  228. if key in default_params:
  229. default_params[key] = value
  230. else:
  231. raise ValueError(f"Unknown argument: {key}")
  232. # 解析参数
  233. augmentation = default_params['augmentation']
  234. backend = default_params['backend']
  235. use_v2 = default_params['use_v2']
  236. if is_train:
  237. return presets.DetectionPresetTrain(
  238. data_augmentation=augmentation, backend=backend, use_v2=use_v2
  239. )
  240. # elif weights and test_only:
  241. # weights = torchvision.models.get_weight(args.weights)
  242. # trans = weights.transforms()
  243. # return lambda img, target: (trans(img), target)
  244. else:
  245. return presets.DetectionPresetEval(backend=backend, use_v2=use_v2)
  246. def write_metric_logs(epoch, metric_logger, writer):
  247. writer.add_scalar(f'loss_classifier:', metric_logger.meters['loss_classifier'].global_avg, epoch)
  248. writer.add_scalar(f'loss_box_reg:', metric_logger.meters['loss_box_reg'].global_avg, epoch)
  249. # writer.add_scalar(f'loss_mask:', metric_logger.meters['loss_mask'].global_avg, epoch)
  250. writer.add_scalar('Loss/box_reg', metric_logger.meters['loss_keypoint'].global_avg, epoch)
  251. writer.add_scalar(f'loss_objectness:', metric_logger.meters['loss_objectness'].global_avg, epoch)
  252. writer.add_scalar(f'loss_rpn_box_reg:', metric_logger.meters['loss_rpn_box_reg'].global_avg, epoch)
  253. writer.add_scalar(f'train loss:', metric_logger.meters['loss'].global_avg, epoch)
  254. # def log_losses_to_tensorboard(writer, result, step):
  255. # writer.add_scalar('Loss/classifier', result['loss_classifier'].item(), step)
  256. # writer.add_scalar('Loss/box_reg', result['loss_box_reg'].item(), step)
  257. # writer.add_scalar('Loss/box_reg', result['loss_keypoint'].item(), step)
  258. # writer.add_scalar('Loss/objectness', result['loss_objectness'].item(), step)
  259. # writer.add_scalar('Loss/rpn_box_reg', result['loss_rpn_box_reg'].item(), step)