line_detect.py 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657
  1. import os
  2. from typing import Any, Callable, List, Optional, Tuple, Union
  3. import torch
  4. from torch import nn
  5. from libs.vision_libs import ops
  6. from libs.vision_libs.models import MobileNet_V3_Large_Weights, mobilenet_v3_large, EfficientNet_V2_S_Weights, \
  7. efficientnet_v2_s, detection, EfficientNet_V2_L_Weights, efficientnet_v2_l, EfficientNet_V2_M_Weights, \
  8. efficientnet_v2_m
  9. from libs.vision_libs.models.detection.anchor_utils import AnchorGenerator
  10. from libs.vision_libs.models.detection.rpn import RPNHead, RegionProposalNetwork
  11. from libs.vision_libs.models.detection.ssdlite import _mobilenet_extractor
  12. from libs.vision_libs.models.detection.transform import GeneralizedRCNNTransform
  13. from libs.vision_libs.ops import misc as misc_nn_ops, MultiScaleRoIAlign
  14. from libs.vision_libs.transforms._presets import ObjectDetection
  15. from libs.vision_libs.models._api import register_model, Weights, WeightsEnum
  16. from libs.vision_libs.models._meta import _COCO_PERSON_CATEGORIES, _COCO_PERSON_KEYPOINT_NAMES, _COCO_CATEGORIES
  17. from libs.vision_libs.models._utils import _ovewrite_value_param, handle_legacy_interface
  18. from libs.vision_libs.models.resnet import resnet50, ResNet50_Weights, ResNet18_Weights, resnet18
  19. from libs.vision_libs.models.detection._utils import overwrite_eps
  20. from libs.vision_libs.models.detection.backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers, \
  21. BackboneWithFPN, resnet_fpn_backbone
  22. from libs.vision_libs.models.detection.faster_rcnn import FasterRCNN, TwoMLPHead, FastRCNNPredictor
  23. from .heads.arc_heads import ArcHeads, ArcPredictor
  24. from .heads.arc_unet import ArcUnet
  25. from .heads.circle_heads import CircleHeads, CirclePredictor
  26. from .heads.line_heads import LinePredictor
  27. from .heads.point_heads import PointHeads, PointPredictor
  28. from .loi_heads import RoIHeads
  29. from .trainer import Trainer
  30. from ..base import backbone_factory
  31. from ..base.backbone_factory import get_convnext_fpn, get_anchor_generator, get_maxvit_fpn, MaxVitBackbone, \
  32. get_swin_transformer_fpn
  33. # from ..base.backbone_factory import get_convnext_fpn, get_anchor_generator
  34. from ..base.base_detection_net import BaseDetectionNet
  35. import torch.nn.functional as F
  36. from ..base.high_reso_maxvit import maxvit_with_fpn
  37. from ..base.high_reso_resnet import resnet50fpn, resnet18fpn, resnet101fpn, Bottleneck
  38. __all__ = [
  39. "LineDetect",
  40. "linedetect_resnet50_fpn",
  41. ]
  42. from ..line_net.line_detect import LineHeads
  43. def _default_anchorgen():
  44. anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
  45. aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
  46. return AnchorGenerator(anchor_sizes, aspect_ratios)
  47. class LineDetect(BaseDetectionNet):
  48. def __init__(
  49. self,
  50. backbone,
  51. num_classes=3,
  52. # transform parameters
  53. min_size=512,
  54. max_size=512,
  55. image_mean=None,
  56. image_std=None,
  57. # RPN parameters
  58. rpn_anchor_generator=None,
  59. rpn_head=None,
  60. rpn_pre_nms_top_n_train=2000,
  61. rpn_pre_nms_top_n_test=1000,
  62. rpn_post_nms_top_n_train=2000,
  63. rpn_post_nms_top_n_test=1000,
  64. rpn_nms_thresh=0.7,
  65. rpn_fg_iou_thresh=0.7,
  66. rpn_bg_iou_thresh=0.3,
  67. rpn_batch_size_per_image=256,
  68. rpn_positive_fraction=0.5,
  69. rpn_score_thresh=0.0,
  70. # Box parameters
  71. box_roi_pool=None,
  72. box_head=None,
  73. box_predictor=None,
  74. box_score_thresh=0.05,
  75. box_nms_thresh=0.5,
  76. box_detections_per_img=200,
  77. box_fg_iou_thresh=0.5,
  78. box_bg_iou_thresh=0.5,
  79. box_batch_size_per_image=512,
  80. box_positive_fraction=0.25,
  81. bbox_reg_weights=None,
  82. # line parameters
  83. line_roi_pool=None,
  84. line_head=None,
  85. line_predictor=None,
  86. # point parameters
  87. point_roi_pool=None,
  88. point_head=None,
  89. point_predictor=None,
  90. circle_head=None,
  91. circle_predictor=None,
  92. circle_roi_pool=None,
  93. # arc parameters
  94. arc_roi_pool=None,
  95. arc_head=None,
  96. arc_predictor=None,
  97. num_points=3,
  98. detect_point=False,
  99. detect_line=False,
  100. detect_arc=True,
  101. detect_circle=False,
  102. **kwargs,
  103. ):
  104. out_channels = backbone.out_channels
  105. if rpn_anchor_generator is None:
  106. rpn_anchor_generator = _default_anchorgen()
  107. if rpn_head is None:
  108. rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
  109. rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
  110. rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)
  111. rpn = RegionProposalNetwork(
  112. rpn_anchor_generator,
  113. rpn_head,
  114. rpn_fg_iou_thresh,
  115. rpn_bg_iou_thresh,
  116. rpn_batch_size_per_image,
  117. rpn_positive_fraction,
  118. rpn_pre_nms_top_n,
  119. rpn_post_nms_top_n,
  120. rpn_nms_thresh,
  121. score_thresh=rpn_score_thresh,
  122. )
  123. if box_roi_pool is None:
  124. box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2)
  125. if box_head is None:
  126. resolution = box_roi_pool.output_size[0]
  127. representation_size = 1024
  128. box_head = TwoMLPHead(out_channels * resolution**2, representation_size)
  129. if box_predictor is None:
  130. representation_size = 1024
  131. box_predictor = ObjectionPredictor(representation_size, num_classes)
  132. roi_heads = RoIHeads(
  133. # Box
  134. box_roi_pool,
  135. box_head,
  136. box_predictor,
  137. box_fg_iou_thresh,
  138. box_bg_iou_thresh,
  139. box_batch_size_per_image,
  140. box_positive_fraction,
  141. bbox_reg_weights,
  142. box_score_thresh,
  143. box_nms_thresh,
  144. box_detections_per_img,
  145. detect_point=detect_point,
  146. detect_line=detect_line,
  147. detect_arc=detect_arc,
  148. detect_circle=detect_circle,
  149. )
  150. if image_mean is None:
  151. image_mean = [0.485, 0.456, 0.406]
  152. if image_std is None:
  153. image_std = [0.229, 0.224, 0.225]
  154. transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std, **kwargs)
  155. super().__init__(backbone, rpn, roi_heads, transform)
  156. if line_head is None and detect_line:
  157. layers = tuple(num_points for _ in range(8))
  158. line_head = LineHeads(8, layers)
  159. if line_predictor is None and detect_line:
  160. # keypoint_dim_reduced = 512 # == keypoint_layers[-1]
  161. line_predictor = LinePredictor(in_channels=256)
  162. if point_head is None and detect_point:
  163. layers = tuple(num_points for _ in range(8))
  164. point_head = PointHeads(8, layers)
  165. if point_predictor is None and detect_point:
  166. # keypoint_dim_reduced = 512 # == keypoint_layers[-1]
  167. point_predictor = PointPredictor(in_channels=256)
  168. if detect_arc and arc_head is None:
  169. layers = tuple(num_points for _ in range(8))
  170. arc_head=ArcHeads(8,layers)
  171. if detect_arc and arc_predictor is None:
  172. layers = tuple(num_points for _ in range(8))
  173. # arc_predictor=ArcPredictor(in_channels=256,out_channels=1)
  174. arc_predictor=ArcUnet(Bottleneck)
  175. if detect_circle and circle_head is None:
  176. layers = tuple(num_points for _ in range(8))
  177. circle_head = CircleHeads(8, layers)
  178. if detect_circle and circle_predictor is None:
  179. layers = tuple(num_points for _ in range(8))
  180. # arc_predictor=ArcPredictor(in_channels=256,out_channels=1)
  181. circle_predictor = CirclePredictor(in_channels=256)
  182. self.roi_heads.line_roi_pool = line_roi_pool
  183. self.roi_heads.line_head = line_head
  184. self.roi_heads.line_predictor = line_predictor
  185. self.roi_heads.point_roi_pool = point_roi_pool
  186. self.roi_heads.point_head = point_head
  187. self.roi_heads.point_predictor = point_predictor
  188. self.roi_heads.arc_roi_pool = arc_roi_pool
  189. self.roi_heads.arc_head = arc_head
  190. self.roi_heads.arc_predictor = arc_predictor
  191. self.roi_heads.circle_roi_pool = circle_roi_pool
  192. self.roi_heads.circle_head = circle_head
  193. self.roi_heads.circle_predictor = circle_predictor
  194. def start_train(self, cfg):
  195. # cfg = read_yaml(cfg)
  196. self.trainer = Trainer()
  197. self.trainer.train_from_cfg(model=self, cfg=cfg)
  198. def load_weights(self, save_path, device='cuda'):
  199. if os.path.exists(save_path):
  200. checkpoint = torch.load(save_path, map_location=device)
  201. self.load_state_dict(checkpoint['model_state_dict'])
  202. # if optimizer is not None:
  203. # optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
  204. # epoch = checkpoint['epoch']
  205. # loss = checkpoint['loss']
  206. # print(f"Loaded best model from {save_path} at epoch {epoch} with loss {loss:.4f}")
  207. print(f"Loaded model from {save_path}")
  208. else:
  209. print(f"No saved model found at {save_path}")
  210. return self
  211. class TwoMLPHead(nn.Module):
  212. """
  213. Standard heads for FPN-based models
  214. Args:
  215. in_channels (int): number of input channels
  216. representation_size (int): size of the intermediate representation
  217. """
  218. def __init__(self, in_channels, representation_size):
  219. super().__init__()
  220. self.fc6 = nn.Linear(in_channels, representation_size)
  221. self.fc7 = nn.Linear(representation_size, representation_size)
  222. def forward(self, x):
  223. x = x.flatten(start_dim=1)
  224. x = F.relu(self.fc6(x))
  225. x = F.relu(self.fc7(x))
  226. return x
  227. class ObjectionConvFCHead(nn.Sequential):
  228. def __init__(
  229. self,
  230. input_size: Tuple[int, int, int],
  231. conv_layers: List[int],
  232. fc_layers: List[int],
  233. norm_layer: Optional[Callable[..., nn.Module]] = None,
  234. ):
  235. """
  236. Args:
  237. input_size (Tuple[int, int, int]): the input size in CHW format.
  238. conv_layers (list): feature dimensions of each Convolution layer
  239. fc_layers (list): feature dimensions of each FCN layer
  240. norm_layer (callable, optional): Module specifying the normalization layer to use. Default: None
  241. """
  242. in_channels, in_height, in_width = input_size
  243. blocks = []
  244. previous_channels = in_channels
  245. for current_channels in conv_layers:
  246. blocks.append(misc_nn_ops.Conv2dNormActivation(previous_channels, current_channels, norm_layer=norm_layer))
  247. previous_channels = current_channels
  248. blocks.append(nn.Flatten())
  249. previous_channels = previous_channels * in_height * in_width
  250. for current_channels in fc_layers:
  251. blocks.append(nn.Linear(previous_channels, current_channels))
  252. blocks.append(nn.ReLU(inplace=True))
  253. previous_channels = current_channels
  254. super().__init__(*blocks)
  255. for layer in self.modules():
  256. if isinstance(layer, nn.Conv2d):
  257. nn.init.kaiming_normal_(layer.weight, mode="fan_out", nonlinearity="relu")
  258. if layer.bias is not None:
  259. nn.init.zeros_(layer.bias)
  260. class ObjectionPredictor(nn.Module):
  261. """
  262. Standard classification + bounding box regression layers
  263. for Fast R-CNN.
  264. Args:
  265. in_channels (int): number of input channels
  266. num_classes (int): number of output classes (including background)
  267. """
  268. def __init__(self, in_channels, num_classes):
  269. super().__init__()
  270. self.cls_score = nn.Linear(in_channels, num_classes)
  271. self.bbox_pred = nn.Linear(in_channels, num_classes * 4)
  272. def forward(self, x):
  273. if x.dim() == 4:
  274. torch._assert(
  275. list(x.shape[2:]) == [1, 1],
  276. f"x has the wrong shape, expecting the last two dimensions to be [1,1] instead of {list(x.shape[2:])}",
  277. )
  278. x = x.flatten(start_dim=1)
  279. scores = self.cls_score(x)
  280. bbox_deltas = self.bbox_pred(x)
  281. return scores, bbox_deltas
  282. def linedetect_newresnet18fpn(
  283. *,
  284. num_classes: Optional[int] = None,
  285. num_points:Optional[int] = None,
  286. **kwargs: Any,
  287. ) -> LineDetect:
  288. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  289. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  290. if num_classes is None:
  291. num_classes = 4
  292. if num_points is None:
  293. num_points = 3
  294. size=512
  295. backbone =resnet18fpn()
  296. featmap_names=['0', '1', '2', '3','4','pool']
  297. # print(f'featmap_names:{featmap_names}')
  298. roi_pooler = MultiScaleRoIAlign(
  299. featmap_names=featmap_names,
  300. output_size=7,
  301. sampling_ratio=2
  302. )
  303. num_features=len(featmap_names)
  304. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  305. # print(f'anchor_sizes:{anchor_sizes}')
  306. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  307. # print(f'aspect_ratios:{aspect_ratios}')
  308. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  309. model = LineDetect(backbone,
  310. num_classes,min_size=size,max_size=size, num_points=num_points,
  311. rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler,
  312. detect_point=False,
  313. detect_line=False,
  314. detect_arc=True,
  315. **kwargs)
  316. return model
  317. def linedetect_newresnet50fpn(
  318. *,
  319. num_classes: Optional[int] = None,
  320. num_points:Optional[int] = None,
  321. **kwargs: Any,
  322. ) -> LineDetect:
  323. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  324. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  325. if num_classes is None:
  326. num_classes = 4
  327. if num_points is None:
  328. num_points = 3
  329. size=768
  330. backbone =resnet50fpn(out_channels=256)
  331. featmap_names=['0', '1', '2', '3','4','pool']
  332. # print(f'featmap_names:{featmap_names}')
  333. roi_pooler = MultiScaleRoIAlign(
  334. featmap_names=featmap_names,
  335. output_size=7,
  336. sampling_ratio=2
  337. )
  338. num_features=len(featmap_names)
  339. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  340. # print(f'anchor_sizes:{anchor_sizes}')
  341. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  342. # print(f'aspect_ratios:{aspect_ratios}')
  343. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  344. model = LineDetect(backbone, num_classes,min_size=size,max_size=size, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler,
  345. detect_point=False,
  346. detect_line=False,
  347. detect_arc=False,
  348. detect_circle=True,
  349. **kwargs)
  350. return model
  351. def linedetect_newresnet101fpn(
  352. *,
  353. num_classes: Optional[int] = None,
  354. num_points:Optional[int] = None,
  355. **kwargs: Any,
  356. ) -> LineDetect:
  357. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  358. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  359. if num_classes is None:
  360. num_classes = 3
  361. if num_points is None:
  362. num_points = 3
  363. size=768
  364. backbone =resnet101fpn(out_channels=256)
  365. featmap_names=['0', '1', '2', '3','4','pool']
  366. # print(f'featmap_names:{featmap_names}')
  367. roi_pooler = MultiScaleRoIAlign(
  368. featmap_names=featmap_names,
  369. output_size=7,
  370. sampling_ratio=2
  371. )
  372. num_features=len(featmap_names)
  373. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  374. # print(f'anchor_sizes:{anchor_sizes}')
  375. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  376. # print(f'aspect_ratios:{aspect_ratios}')
  377. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  378. model = LineDetect(backbone, num_classes,min_size=size,max_size=size, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
  379. return model
  380. def linedetect_newresnet152fpn(
  381. *,
  382. num_classes: Optional[int] = None,
  383. num_points:Optional[int] = None,
  384. **kwargs: Any,
  385. ) -> LineDetect:
  386. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  387. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  388. if num_classes is None:
  389. num_classes = 4
  390. if num_points is None:
  391. num_points = 3
  392. size=800
  393. backbone =resnet101fpn(out_channels=256)
  394. featmap_names=['0', '1', '2', '3','4','pool']
  395. # print(f'featmap_names:{featmap_names}')
  396. roi_pooler = MultiScaleRoIAlign(
  397. featmap_names=featmap_names,
  398. output_size=7,
  399. sampling_ratio=2
  400. )
  401. num_features=len(featmap_names)
  402. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  403. # print(f'anchor_sizes:{anchor_sizes}')
  404. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  405. # print(f'aspect_ratios:{aspect_ratios}')
  406. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  407. model = LineDetect(backbone, num_classes,min_size=size,max_size=size, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
  408. return model
  409. def linedetect_maxvitfpn(
  410. *,
  411. num_classes: Optional[int] = None,
  412. num_points:Optional[int] = None,
  413. **kwargs: Any,
  414. ) -> LineDetect:
  415. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  416. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  417. if num_classes is None:
  418. num_classes = 4
  419. if num_points is None:
  420. num_points = 3
  421. size=224*3
  422. maxvit = MaxVitBackbone(input_size=(size,size))
  423. # print(maxvit.named_children())
  424. # for i,layer in enumerate(maxvit.named_children()):
  425. # print(f'layer:{i}:{layer}')
  426. in_channels_list = [64, 64, 128, 256, 512]
  427. featmap_names = ['0', '1', '2', '3', '4', 'pool']
  428. roi_pooler = MultiScaleRoIAlign(
  429. featmap_names=featmap_names,
  430. output_size=7,
  431. sampling_ratio=2
  432. )
  433. backbone_with_fpn = BackboneWithFPN(
  434. maxvit,
  435. return_layers={'stem': '0', 'block0': '1', 'block1': '2', 'block2': '3', 'block3': '4'},
  436. # 确保这些键对应到实际的层
  437. in_channels_list=in_channels_list,
  438. out_channels=128
  439. )
  440. test_input = torch.randn(1, 3,size,size)
  441. model = LineDetect(
  442. backbone=backbone_with_fpn,
  443. min_size=size,
  444. max_size=size,
  445. num_classes=num_classes, # COCO 数据集有 91 类
  446. rpn_anchor_generator=get_anchor_generator(backbone_with_fpn, test_input=test_input),
  447. box_roi_pool=roi_pooler,
  448. detect_line=False,
  449. detect_point=False,
  450. detect_arc=True,
  451. )
  452. return model
  453. def linedetect_high_maxvitfpn(
  454. *,
  455. num_classes: Optional[int] = None,
  456. num_points:Optional[int] = None,
  457. **kwargs: Any,
  458. ) -> LineDetect:
  459. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  460. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  461. if num_classes is None:
  462. num_classes = 3
  463. if num_points is None:
  464. num_points = 3
  465. size=224*2
  466. maxvitfpn =maxvit_with_fpn(size=size)
  467. # print(maxvit.named_children())
  468. # for i,layer in enumerate(maxvit.named_children()):
  469. # print(f'layer:{i}:{layer}')
  470. in_channels_list = [64,64, 64, 128, 256, 512]
  471. featmap_names = ['0', '1', '2', '3', '4', '5','pool']
  472. roi_pooler = MultiScaleRoIAlign(
  473. featmap_names=featmap_names,
  474. output_size=7,
  475. sampling_ratio=2
  476. )
  477. test_input = torch.randn(1, 3,size,size)
  478. model = LineDetect(
  479. backbone=maxvitfpn,
  480. min_size=size,
  481. max_size=size,
  482. num_classes=3, # COCO 数据集有 91 类
  483. rpn_anchor_generator=get_anchor_generator(maxvitfpn, test_input=test_input),
  484. box_roi_pool=roi_pooler
  485. )
  486. return model
  487. def linedetect_swin_transformer_fpn(
  488. *,
  489. num_classes: Optional[int] = None,
  490. num_points:Optional[int] = None,
  491. type='t',
  492. **kwargs: Any,
  493. ) -> LineDetect:
  494. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  495. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  496. if num_classes is None:
  497. num_classes = 3
  498. if num_points is None:
  499. num_points = 3
  500. size=512
  501. backbone_with_fpn, roi_pooler, anchor_generator=get_swin_transformer_fpn(type=type)
  502. # test_input = torch.randn(1, 3,size,size)
  503. model = LineDetect(
  504. backbone=backbone_with_fpn,
  505. min_size=size,
  506. max_size=size,
  507. num_classes=3, # COCO 数据集有 91 类
  508. rpn_anchor_generator=anchor_generator,
  509. box_roi_pool=roi_pooler,
  510. detect_line=True,
  511. detect_point=False,
  512. )
  513. return model
  514. def linedetect_resnet18_fpn(
  515. *,
  516. num_classes: Optional[int] = None,
  517. num_points: Optional[int] = None,
  518. **kwargs: Any,
  519. ) -> LineDetect:
  520. if num_classes is None:
  521. num_classes = 4
  522. if num_points is None:
  523. num_points = 3
  524. size=1024
  525. backbone = resnet_fpn_backbone(backbone_name='resnet18',weights=None)
  526. model = LineDetect(backbone,min_size=size,max_size=size , num_classes=num_classes, num_points=num_points, **kwargs)
  527. return model
  528. def linedetect_resnet50_fpn(
  529. *,
  530. num_classes: Optional[int] = None,
  531. num_points: Optional[int] = None,
  532. **kwargs: Any,
  533. ) -> LineDetect:
  534. if num_classes is None:
  535. num_classes = 3
  536. if num_points is None:
  537. num_points = 3
  538. backbone = resnet_fpn_backbone(backbone_name='resnet18', weights=None)
  539. model = LineDetect(backbone, num_classes, num_points=num_points, **kwargs)
  540. return model