loi_heads.py 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330
  1. from typing import Dict, List, Optional, Tuple
  2. import matplotlib.pyplot as plt
  3. import torch
  4. import torch.nn.functional as F
  5. import torchvision
  6. from scipy.optimize import linear_sum_assignment
  7. from torch import nn, Tensor
  8. from libs.vision_libs.ops import boxes as box_ops, roi_align
  9. import libs.vision_libs.models.detection._utils as det_utils
  10. from collections import OrderedDict
  11. def fastrcnn_loss(class_logits, box_regression, labels, regression_targets):
  12. # type: (Tensor, Tensor, List[Tensor], List[Tensor]) -> Tuple[Tensor, Tensor]
  13. """
  14. Computes the loss for Faster R-CNN.
  15. Args:
  16. class_logits (Tensor)
  17. box_regression (Tensor)
  18. labels (list[BoxList])
  19. regression_targets (Tensor)
  20. Returns:
  21. classification_loss (Tensor)
  22. box_loss (Tensor)
  23. """
  24. # print(f'compute fastrcnn_loss:{labels}')
  25. labels = torch.cat(labels, dim=0)
  26. regression_targets = torch.cat(regression_targets, dim=0)
  27. classification_loss = F.cross_entropy(class_logits, labels)
  28. # get indices that correspond to the regression targets for
  29. # the corresponding ground truth labels, to be used with
  30. # advanced indexing
  31. sampled_pos_inds_subset = torch.where(labels > 0)[0]
  32. labels_pos = labels[sampled_pos_inds_subset]
  33. N, num_classes = class_logits.shape
  34. box_regression = box_regression.reshape(N, box_regression.size(-1) // 4, 4)
  35. box_loss = F.smooth_l1_loss(
  36. box_regression[sampled_pos_inds_subset, labels_pos],
  37. regression_targets[sampled_pos_inds_subset],
  38. beta=1 / 9,
  39. reduction="sum",
  40. )
  41. box_loss = box_loss / labels.numel()
  42. return classification_loss, box_loss
  43. def maskrcnn_inference(x, labels):
  44. # type: (Tensor, List[Tensor]) -> List[Tensor]
  45. """
  46. From the results of the CNN, post process the masks
  47. by taking the mask corresponding to the class with max
  48. probability (which are of fixed size and directly output
  49. by the CNN) and return the masks in the mask field of the BoxList.
  50. Args:
  51. x (Tensor): the mask logits
  52. labels (list[BoxList]): bounding boxes that are used as
  53. reference, one for ech image
  54. Returns:
  55. results (list[BoxList]): one BoxList for each image, containing
  56. the extra field mask
  57. """
  58. mask_prob = x.sigmoid()
  59. # select masks corresponding to the predicted classes
  60. num_masks = x.shape[0]
  61. boxes_per_image = [label.shape[0] for label in labels]
  62. labels = torch.cat(labels)
  63. index = torch.arange(num_masks, device=labels.device)
  64. mask_prob = mask_prob[index, labels][:, None]
  65. mask_prob = mask_prob.split(boxes_per_image, dim=0)
  66. return mask_prob
  67. def project_masks_on_boxes(gt_masks, boxes, matched_idxs, M):
  68. # type: (Tensor, Tensor, Tensor, int) -> Tensor
  69. """
  70. Given segmentation masks and the bounding boxes corresponding
  71. to the location of the masks in the image, this function
  72. crops and resizes the masks in the position defined by the
  73. boxes. This prepares the masks for them to be fed to the
  74. loss computation as the targets.
  75. """
  76. matched_idxs = matched_idxs.to(boxes)
  77. rois = torch.cat([matched_idxs[:, None], boxes], dim=1)
  78. gt_masks = gt_masks[:, None].to(rois)
  79. return roi_align(gt_masks, rois, (M, M), 1.0)[:, 0]
  80. def maskrcnn_loss(mask_logits, proposals, gt_masks, gt_labels, mask_matched_idxs):
  81. # type: (Tensor, List[Tensor], List[Tensor], List[Tensor], List[Tensor]) -> Tensor
  82. """
  83. Args:
  84. proposals (list[BoxList])
  85. mask_logits (Tensor)
  86. targets (list[BoxList])
  87. Return:
  88. mask_loss (Tensor): scalar tensor containing the loss
  89. """
  90. discretization_size = mask_logits.shape[-1]
  91. labels = [gt_label[idxs] for gt_label, idxs in zip(gt_labels, mask_matched_idxs)]
  92. mask_targets = [
  93. project_masks_on_boxes(m, p, i, discretization_size) for m, p, i in zip(gt_masks, proposals, mask_matched_idxs)
  94. ]
  95. labels = torch.cat(labels, dim=0)
  96. mask_targets = torch.cat(mask_targets, dim=0)
  97. # torch.mean (in binary_cross_entropy_with_logits) doesn't
  98. # accept empty tensors, so handle it separately
  99. if mask_targets.numel() == 0:
  100. return mask_logits.sum() * 0
  101. mask_loss = F.binary_cross_entropy_with_logits(
  102. mask_logits[torch.arange(labels.shape[0], device=labels.device), labels], mask_targets
  103. )
  104. return mask_loss
  105. def line_points_to_heatmap(keypoints, rois, heatmap_size):
  106. # type: (Tensor, Tensor, int) -> Tuple[Tensor, Tensor]
  107. print(f'rois:{rois.shape}')
  108. print(f'heatmap_size:{heatmap_size}')
  109. offset_x = rois[:, 0]
  110. offset_y = rois[:, 1]
  111. scale_x = heatmap_size / (rois[:, 2] - rois[:, 0])
  112. scale_y = heatmap_size / (rois[:, 3] - rois[:, 1])
  113. offset_x = offset_x[:, None]
  114. offset_y = offset_y[:, None]
  115. scale_x = scale_x[:, None]
  116. scale_y = scale_y[:, None]
  117. print(f'keypoints.shape:{keypoints.shape}')
  118. # batch_size, num_keypoints, _ = keypoints.shape
  119. x = keypoints[..., 0]
  120. y = keypoints[..., 1]
  121. # gs=generate_gaussian_heatmaps(x,y,512,1.0)
  122. # print(f'gs_heatmap shape:{gs.shape}')
  123. #
  124. # show_heatmap(gs,'target')
  125. x_boundary_inds = x == rois[:, 2][:, None]
  126. y_boundary_inds = y == rois[:, 3][:, None]
  127. x = (x - offset_x) * scale_x
  128. x = x.floor().long()
  129. y = (y - offset_y) * scale_y
  130. y = y.floor().long()
  131. x[x_boundary_inds] = heatmap_size - 1
  132. y[y_boundary_inds] = heatmap_size - 1
  133. # print(f'heatmaps x:{x}')
  134. # print(f'heatmaps y:{y}')
  135. valid_loc = (x >= 0) & (y >= 0) & (x < heatmap_size) & (y < heatmap_size)
  136. vis = keypoints[..., 2] > 0
  137. valid = (valid_loc & vis).long()
  138. gs_heatmap=generate_gaussian_heatmaps(x,y,heatmap_size,1.0)
  139. # show_heatmap(gs_heatmap[0],'feature')
  140. print(f'gs_heatmap:{gs_heatmap.shape}')
  141. #
  142. # lin_ind = y * heatmap_size + x
  143. # print(f'lin_ind:{lin_ind.shape}')
  144. # heatmaps = lin_ind * valid
  145. return gs_heatmap
  146. def generate_gaussian_heatmaps(xs, ys, heatmap_size, sigma=2.0, device='cuda'):
  147. """
  148. 为一组点生成并合并高斯热图。
  149. Args:
  150. xs (Tensor): 形状为 (N, 2) 的所有点的 x 坐标
  151. ys (Tensor): 形状为 (N, 2) 的所有点的 y 坐标
  152. heatmap_size (int): 热图大小 H=W
  153. sigma (float): 高斯核标准差
  154. device (str): 设备类型 ('cpu' or 'cuda')
  155. Returns:
  156. Tensor: 形状为 (H, W) 的合并后的热图
  157. """
  158. assert xs.shape == ys.shape, "x and y must have the same shape"
  159. N = xs.shape[0]
  160. print(f'N:{N}')
  161. # 创建网格
  162. grid_y, grid_x = torch.meshgrid(
  163. torch.arange(heatmap_size, device=device),
  164. torch.arange(heatmap_size, device=device),
  165. indexing='ij'
  166. )
  167. # print(f'heatmap_size:{heatmap_size}')
  168. # 初始化输出热图
  169. combined_heatmap = torch.zeros((N,heatmap_size, heatmap_size), device=device)
  170. for i in range(N):
  171. mu_x1 = xs[i, 0].clamp(0, heatmap_size - 1).item()
  172. mu_y1 = ys[i, 0].clamp(0, heatmap_size - 1).item()
  173. # 计算距离平方
  174. dist1 = (grid_x - mu_x1) ** 2 + (grid_y - mu_y1) ** 2
  175. # 计算高斯分布
  176. heatmap1 = torch.exp(-dist1 / (2 * sigma ** 2))
  177. mu_x2 = xs[i, 1].clamp(0, heatmap_size - 1).item()
  178. mu_y2 = ys[i, 1].clamp(0, heatmap_size - 1).item()
  179. # 计算距离平方
  180. dist2 = (grid_x - mu_x2) ** 2 + (grid_y - mu_y2) ** 2
  181. # 计算高斯分布
  182. heatmap2 = torch.exp(-dist2 / (2 * sigma ** 2))
  183. heatmap=heatmap1+heatmap2
  184. # 将当前热图累加到结果中
  185. combined_heatmap[i]= heatmap
  186. return combined_heatmap
  187. # 显示热图的函数
  188. def show_heatmap(heatmap, title="Heatmap"):
  189. """
  190. 使用 matplotlib 显示热图。
  191. Args:
  192. heatmap (Tensor): 要显示的热图张量
  193. title (str): 图表标题
  194. """
  195. # 如果在 GPU 上,首先将其移动到 CPU 并转换为 numpy 数组
  196. if heatmap.is_cuda:
  197. heatmap = heatmap.cpu().numpy()
  198. else:
  199. heatmap = heatmap.numpy()
  200. plt.imshow(heatmap, cmap='hot', interpolation='nearest')
  201. plt.colorbar()
  202. plt.title(title)
  203. plt.show()
  204. def keypoints_to_heatmap(keypoints, rois, heatmap_size):
  205. # type: (Tensor, Tensor, int) -> Tuple[Tensor, Tensor]
  206. offset_x = rois[:, 0]
  207. offset_y = rois[:, 1]
  208. scale_x = heatmap_size / (rois[:, 2] - rois[:, 0])
  209. scale_y = heatmap_size / (rois[:, 3] - rois[:, 1])
  210. offset_x = offset_x[:, None]
  211. offset_y = offset_y[:, None]
  212. scale_x = scale_x[:, None]
  213. scale_y = scale_y[:, None]
  214. x = keypoints[..., 0]
  215. y = keypoints[..., 1]
  216. x_boundary_inds = x == rois[:, 2][:, None]
  217. y_boundary_inds = y == rois[:, 3][:, None]
  218. x = (x - offset_x) * scale_x
  219. x = x.floor().long()
  220. y = (y - offset_y) * scale_y
  221. y = y.floor().long()
  222. x[x_boundary_inds] = heatmap_size - 1
  223. y[y_boundary_inds] = heatmap_size - 1
  224. valid_loc = (x >= 0) & (y >= 0) & (x < heatmap_size) & (y < heatmap_size)
  225. vis = keypoints[..., 2] > 0
  226. valid = (valid_loc & vis).long()
  227. lin_ind = y * heatmap_size + x
  228. heatmaps = lin_ind * valid
  229. return heatmaps, valid
  230. def _onnx_heatmaps_to_keypoints(
  231. maps, maps_i, roi_map_width, roi_map_height, widths_i, heights_i, offset_x_i, offset_y_i
  232. ):
  233. num_keypoints = torch.scalar_tensor(maps.size(1), dtype=torch.int64)
  234. width_correction = widths_i / roi_map_width
  235. height_correction = heights_i / roi_map_height
  236. roi_map = F.interpolate(
  237. maps_i[:, None], size=(int(roi_map_height), int(roi_map_width)), mode="bicubic", align_corners=False
  238. )[:, 0]
  239. w = torch.scalar_tensor(roi_map.size(2), dtype=torch.int64)
  240. pos = roi_map.reshape(num_keypoints, -1).argmax(dim=1)
  241. x_int = pos % w
  242. y_int = (pos - x_int) // w
  243. x = (torch.tensor(0.5, dtype=torch.float32) + x_int.to(dtype=torch.float32)) * width_correction.to(
  244. dtype=torch.float32
  245. )
  246. y = (torch.tensor(0.5, dtype=torch.float32) + y_int.to(dtype=torch.float32)) * height_correction.to(
  247. dtype=torch.float32
  248. )
  249. xy_preds_i_0 = x + offset_x_i.to(dtype=torch.float32)
  250. xy_preds_i_1 = y + offset_y_i.to(dtype=torch.float32)
  251. xy_preds_i_2 = torch.ones(xy_preds_i_1.shape, dtype=torch.float32)
  252. xy_preds_i = torch.stack(
  253. [
  254. xy_preds_i_0.to(dtype=torch.float32),
  255. xy_preds_i_1.to(dtype=torch.float32),
  256. xy_preds_i_2.to(dtype=torch.float32),
  257. ],
  258. 0,
  259. )
  260. # TODO: simplify when indexing without rank will be supported by ONNX
  261. base = num_keypoints * num_keypoints + num_keypoints + 1
  262. ind = torch.arange(num_keypoints)
  263. ind = ind.to(dtype=torch.int64) * base
  264. end_scores_i = (
  265. roi_map.index_select(1, y_int.to(dtype=torch.int64))
  266. .index_select(2, x_int.to(dtype=torch.int64))
  267. .view(-1)
  268. .index_select(0, ind.to(dtype=torch.int64))
  269. )
  270. return xy_preds_i, end_scores_i
  271. @torch.jit._script_if_tracing
  272. def _onnx_heatmaps_to_keypoints_loop(
  273. maps, rois, widths_ceil, heights_ceil, widths, heights, offset_x, offset_y, num_keypoints
  274. ):
  275. xy_preds = torch.zeros((0, 3, int(num_keypoints)), dtype=torch.float32, device=maps.device)
  276. end_scores = torch.zeros((0, int(num_keypoints)), dtype=torch.float32, device=maps.device)
  277. for i in range(int(rois.size(0))):
  278. xy_preds_i, end_scores_i = _onnx_heatmaps_to_keypoints(
  279. maps, maps[i], widths_ceil[i], heights_ceil[i], widths[i], heights[i], offset_x[i], offset_y[i]
  280. )
  281. xy_preds = torch.cat((xy_preds.to(dtype=torch.float32), xy_preds_i.unsqueeze(0).to(dtype=torch.float32)), 0)
  282. end_scores = torch.cat(
  283. (end_scores.to(dtype=torch.float32), end_scores_i.to(dtype=torch.float32).unsqueeze(0)), 0
  284. )
  285. return xy_preds, end_scores
  286. def heatmaps_to_keypoints(maps, rois):
  287. """Extract predicted keypoint locations from heatmaps. Output has shape
  288. (#rois, 4, #keypoints) with the 4 rows corresponding to (x, y, logit, prob)
  289. for each keypoint.
  290. """
  291. # This function converts a discrete image coordinate in a HEATMAP_SIZE x
  292. # HEATMAP_SIZE image to a continuous keypoint coordinate. We maintain
  293. # consistency with keypoints_to_heatmap_labels by using the conversion from
  294. # Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a
  295. # continuous coordinate.
  296. offset_x = rois[:, 0]
  297. offset_y = rois[:, 1]
  298. widths = rois[:, 2] - rois[:, 0]
  299. heights = rois[:, 3] - rois[:, 1]
  300. widths = widths.clamp(min=1)
  301. heights = heights.clamp(min=1)
  302. widths_ceil = widths.ceil()
  303. heights_ceil = heights.ceil()
  304. num_keypoints = maps.shape[1]
  305. if torchvision._is_tracing():
  306. xy_preds, end_scores = _onnx_heatmaps_to_keypoints_loop(
  307. maps,
  308. rois,
  309. widths_ceil,
  310. heights_ceil,
  311. widths,
  312. heights,
  313. offset_x,
  314. offset_y,
  315. torch.scalar_tensor(num_keypoints, dtype=torch.int64),
  316. )
  317. return xy_preds.permute(0, 2, 1), end_scores
  318. xy_preds = torch.zeros((len(rois), 3, num_keypoints), dtype=torch.float32, device=maps.device)
  319. end_scores = torch.zeros((len(rois), num_keypoints), dtype=torch.float32, device=maps.device)
  320. for i in range(len(rois)):
  321. roi_map_width = int(widths_ceil[i].item())
  322. roi_map_height = int(heights_ceil[i].item())
  323. width_correction = widths[i] / roi_map_width
  324. height_correction = heights[i] / roi_map_height
  325. roi_map = F.interpolate(
  326. maps[i][:, None], size=(roi_map_height, roi_map_width), mode="bicubic", align_corners=False
  327. )[:, 0]
  328. # roi_map_probs = scores_to_probs(roi_map.copy())
  329. w = roi_map.shape[2]
  330. pos = roi_map.reshape(num_keypoints, -1).argmax(dim=1)
  331. x_int = pos % w
  332. y_int = torch.div(pos - x_int, w, rounding_mode="floor")
  333. # assert (roi_map_probs[k, y_int, x_int] ==
  334. # roi_map_probs[k, :, :].max())
  335. x = (x_int.float() + 0.5) * width_correction
  336. y = (y_int.float() + 0.5) * height_correction
  337. xy_preds[i, 0, :] = x + offset_x[i]
  338. xy_preds[i, 1, :] = y + offset_y[i]
  339. xy_preds[i, 2, :] = 1
  340. end_scores[i, :] = roi_map[torch.arange(num_keypoints, device=roi_map.device), y_int, x_int]
  341. return xy_preds.permute(0, 2, 1), end_scores
  342. def non_maximum_suppression(a):
  343. ap = F.max_pool2d(a, 3, stride=1, padding=1)
  344. mask = (a == ap).float().clamp(min=0.0)
  345. return a * mask
  346. def heatmaps_to_lines(maps, rois):
  347. """Extract predicted keypoint locations from heatmaps. Output has shape
  348. (#rois, 4, #keypoints) with the 4 rows corresponding to (x, y, logit, prob)
  349. for each keypoint.
  350. """
  351. # This function converts a discrete image coordinate in a HEATMAP_SIZE x
  352. # HEATMAP_SIZE image to a continuous keypoint coordinate. We maintain
  353. # consistency with keypoints_to_heatmap_labels by using the conversion from
  354. # Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a
  355. # continuous coordinate.
  356. offset_x = rois[:, 0]
  357. offset_y = rois[:, 1]
  358. widths = rois[:, 2] - rois[:, 0]
  359. heights = rois[:, 3] - rois[:, 1]
  360. widths = widths.clamp(min=1)
  361. heights = heights.clamp(min=1)
  362. widths_ceil = widths.ceil()
  363. heights_ceil = heights.ceil()
  364. num_keypoints = maps.shape[1]
  365. xy_preds = torch.zeros((len(rois), 3, 2), dtype=torch.float32, device=maps.device)
  366. end_scores = torch.zeros((len(rois), 2), dtype=torch.float32, device=maps.device)
  367. for i in range(len(rois)):
  368. roi_map_width = int(widths_ceil[i].item())
  369. roi_map_height = int(heights_ceil[i].item())
  370. width_correction = widths[i] / roi_map_width
  371. height_correction = heights[i] / roi_map_height
  372. roi_map = F.interpolate(
  373. maps[i][:, None], size=(roi_map_height, roi_map_width), mode="bicubic", align_corners=False
  374. )[:, 0]
  375. print(f'roi_map:{roi_map.shape}')
  376. # roi_map_probs = scores_to_probs(roi_map.copy())
  377. w = roi_map.shape[2]
  378. flatten_map=non_maximum_suppression(roi_map).reshape(1, -1)
  379. score, index = torch.topk(flatten_map, k=2)
  380. print(f'index:{index}')
  381. # pos = roi_map.reshape(num_keypoints, -1).argmax(dim=1)
  382. pos=index
  383. x_int = pos % w
  384. y_int = torch.div(pos - x_int, w, rounding_mode="floor")
  385. # assert (roi_map_probs[k, y_int, x_int] ==
  386. # roi_map_probs[k, :, :].max())
  387. x = (x_int.float() + 0.5) * width_correction
  388. y = (y_int.float() + 0.5) * height_correction
  389. xy_preds[i, 0, :] = x + offset_x[i]
  390. xy_preds[i, 1, :] = y + offset_y[i]
  391. xy_preds[i, 2, :] = 1
  392. end_scores[i, :] = roi_map[torch.arange(1, device=roi_map.device), y_int, x_int]
  393. return xy_preds.permute(0, 2, 1), end_scores
  394. def lines_point_pair_loss(line_logits, proposals, gt_lines, line_matched_idxs):
  395. # type: (Tensor, List[Tensor], List[Tensor], List[Tensor]) -> Tensor
  396. N, K, H, W = line_logits.shape
  397. len_proposals=len(proposals)
  398. print(f'lines_point_pair_loss line_logits.shape:{line_logits.shape},len_proposals:{len_proposals}')
  399. if H != W:
  400. raise ValueError(
  401. f"line_logits height and width (last two elements of shape) should be equal. Instead got H = {H} and W = {W}"
  402. )
  403. discretization_size = H
  404. heatmaps = []
  405. gs_heatmaps=[]
  406. valid = []
  407. for proposals_per_image, gt_kp_in_image, midx in zip(proposals, gt_lines, line_matched_idxs):
  408. print(f'proposals_per_image:{proposals_per_image.shape}')
  409. kp = gt_kp_in_image[midx]
  410. gs_heatmaps_per_img = line_points_to_heatmap(kp, proposals_per_image, discretization_size)
  411. gs_heatmaps.append(gs_heatmaps_per_img)
  412. # print(f'heatmaps_per_image:{heatmaps_per_image.shape}')
  413. # heatmaps.append(heatmaps_per_image.view(-1))
  414. # valid.append(valid_per_image.view(-1))
  415. # line_targets = torch.cat(heatmaps, dim=0)
  416. gs_heatmaps=torch.cat(gs_heatmaps,dim=0)
  417. print(f'gs_heatmaps:{gs_heatmaps.shape}, line_logits.shape:{line_logits.squeeze(1).shape}')
  418. # print(f'line_targets:{line_targets.shape},{line_targets}')
  419. # valid = torch.cat(valid, dim=0).to(dtype=torch.uint8)
  420. # valid = torch.where(valid)[0]
  421. # print(f' line_targets[valid]:{line_targets[valid]}')
  422. # torch.mean (in binary_cross_entropy_with_logits) doesn't
  423. # accept empty tensors, so handle it sepaartely
  424. # if line_targets.numel() == 0 or len(valid) == 0:
  425. # return line_logits.sum() * 0
  426. # line_logits = line_logits.view(N * K, H * W)
  427. # print(f'line_logits[valid]:{line_logits[valid].shape}')
  428. line_logits=line_logits.squeeze(1)
  429. # line_loss = F.cross_entropy(line_logits[valid], line_targets[valid])
  430. line_loss=F.cross_entropy(line_logits,gs_heatmaps)
  431. return line_loss
  432. def line_to_box(line,img_size):
  433. p1 = line[:, :2][0]
  434. p2 = line[:, :2][1]
  435. x_coords = torch.tensor([p1[0], p2[0]])
  436. y_coords = torch.tensor([p1[1], p2[1]])
  437. x_min = x_coords.min().clamp(min=0)
  438. y_min = y_coords.min().clamp(min=0)
  439. x_max = x_coords.max().clamp(min=0)
  440. y_max = y_coords.max().clamp(min=0)
  441. x_min = (x_min - 1).clamp(min=0)
  442. y_min = (y_min - 1).clamp(min=0)
  443. x_max = (x_max + 1).clamp(max=img_size)
  444. y_max = (y_max + 1).clamp(max=img_size)
  445. return torch.stack([x_min, y_min, x_max, y_max])
  446. def box_iou(box1, box2):
  447. # box: [x1, y1, x2, y2]
  448. lt = torch.max(box1[:2], box2[:2])
  449. rb = torch.min(box1[2:], box2[2:])
  450. wh = (rb - lt).clamp(min=0)
  451. inter_area = wh[0] * wh[1]
  452. area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
  453. area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
  454. union_area = area1 + area2 - inter_area
  455. iou = inter_area / (union_area + 1e-6)
  456. return iou
  457. def line_iou_loss(x, boxes, gt_lines, matched_idx,img_size):
  458. losses = []
  459. boxes_per_image = [box.size(0) for box in boxes]
  460. x2 = x.split(boxes_per_image, dim=0)
  461. for xx, bb, gt_line, mid in zip(x2, boxes, gt_lines, matched_idx):
  462. p_prob, scores = heatmaps_to_lines(xx, bb)
  463. pred_lines = p_prob
  464. gt_line_points = gt_line[mid]
  465. if len(pred_lines) == 0 or len(gt_line_points) == 0:
  466. continue
  467. # 匈牙利匹配,避免顺序错位
  468. # cost_matrix = torch.zeros((len(pred_lines), len(gt_line_points)))
  469. for i, pline in enumerate(pred_lines):
  470. for j, gline in enumerate(gt_line_points):
  471. box1 = line_to_box(pline,img_size)
  472. box2 = line_to_box(gline,img_size)
  473. iou = box_iou(box1, box2)
  474. losses.append(1.0 - iou)
  475. total_loss = torch.mean(torch.stack(losses)) if losses else None
  476. return total_loss
  477. def line_inference(x, boxes):
  478. # type: (Tensor, List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]
  479. points_probs = []
  480. points_scores = []
  481. boxes_per_image = [box.size(0) for box in boxes]
  482. x2 = x.split(boxes_per_image, dim=0)
  483. for xx, bb in zip(x2, boxes):
  484. p_prob, scores = heatmaps_to_lines(xx, bb)
  485. points_probs.append(p_prob)
  486. points_scores.append(scores)
  487. return points_probs, points_scores
  488. def keypointrcnn_loss(keypoint_logits, proposals, gt_keypoints, keypoint_matched_idxs):
  489. # type: (Tensor, List[Tensor], List[Tensor], List[Tensor]) -> Tensor
  490. N, K, H, W = keypoint_logits.shape
  491. if H != W:
  492. raise ValueError(
  493. f"keypoint_logits height and width (last two elements of shape) should be equal. Instead got H = {H} and W = {W}"
  494. )
  495. discretization_size = H
  496. heatmaps = []
  497. valid = []
  498. for proposals_per_image, gt_kp_in_image, midx in zip(proposals, gt_keypoints, keypoint_matched_idxs):
  499. kp = gt_kp_in_image[midx]
  500. heatmaps_per_image, valid_per_image = keypoints_to_heatmap(kp, proposals_per_image, discretization_size)
  501. heatmaps.append(heatmaps_per_image.view(-1))
  502. valid.append(valid_per_image.view(-1))
  503. keypoint_targets = torch.cat(heatmaps, dim=0)
  504. valid = torch.cat(valid, dim=0).to(dtype=torch.uint8)
  505. valid = torch.where(valid)[0]
  506. # torch.mean (in binary_cross_entropy_with_logits) doesn't
  507. # accept empty tensors, so handle it sepaartely
  508. if keypoint_targets.numel() == 0 or len(valid) == 0:
  509. return keypoint_logits.sum() * 0
  510. keypoint_logits = keypoint_logits.view(N * K, H * W)
  511. keypoint_loss = F.cross_entropy(keypoint_logits[valid], keypoint_targets[valid])
  512. return keypoint_loss
  513. def keypointrcnn_inference(x, boxes):
  514. # type: (Tensor, List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]
  515. kp_probs = []
  516. kp_scores = []
  517. boxes_per_image = [box.size(0) for box in boxes]
  518. x2 = x.split(boxes_per_image, dim=0)
  519. for xx, bb in zip(x2, boxes):
  520. kp_prob, scores = heatmaps_to_keypoints(xx, bb)
  521. kp_probs.append(kp_prob)
  522. kp_scores.append(scores)
  523. return kp_probs, kp_scores
  524. def _onnx_expand_boxes(boxes, scale):
  525. # type: (Tensor, float) -> Tensor
  526. w_half = (boxes[:, 2] - boxes[:, 0]) * 0.5
  527. h_half = (boxes[:, 3] - boxes[:, 1]) * 0.5
  528. x_c = (boxes[:, 2] + boxes[:, 0]) * 0.5
  529. y_c = (boxes[:, 3] + boxes[:, 1]) * 0.5
  530. w_half = w_half.to(dtype=torch.float32) * scale
  531. h_half = h_half.to(dtype=torch.float32) * scale
  532. boxes_exp0 = x_c - w_half
  533. boxes_exp1 = y_c - h_half
  534. boxes_exp2 = x_c + w_half
  535. boxes_exp3 = y_c + h_half
  536. boxes_exp = torch.stack((boxes_exp0, boxes_exp1, boxes_exp2, boxes_exp3), 1)
  537. return boxes_exp
  538. # the next two functions should be merged inside Masker
  539. # but are kept here for the moment while we need them
  540. # temporarily for paste_mask_in_image
  541. def expand_boxes(boxes, scale):
  542. # type: (Tensor, float) -> Tensor
  543. if torchvision._is_tracing():
  544. return _onnx_expand_boxes(boxes, scale)
  545. w_half = (boxes[:, 2] - boxes[:, 0]) * 0.5
  546. h_half = (boxes[:, 3] - boxes[:, 1]) * 0.5
  547. x_c = (boxes[:, 2] + boxes[:, 0]) * 0.5
  548. y_c = (boxes[:, 3] + boxes[:, 1]) * 0.5
  549. w_half *= scale
  550. h_half *= scale
  551. boxes_exp = torch.zeros_like(boxes)
  552. boxes_exp[:, 0] = x_c - w_half
  553. boxes_exp[:, 2] = x_c + w_half
  554. boxes_exp[:, 1] = y_c - h_half
  555. boxes_exp[:, 3] = y_c + h_half
  556. return boxes_exp
  557. @torch.jit.unused
  558. def expand_masks_tracing_scale(M, padding):
  559. # type: (int, int) -> float
  560. return torch.tensor(M + 2 * padding).to(torch.float32) / torch.tensor(M).to(torch.float32)
  561. def expand_masks(mask, padding):
  562. # type: (Tensor, int) -> Tuple[Tensor, float]
  563. M = mask.shape[-1]
  564. if torch._C._get_tracing_state(): # could not import is_tracing(), not sure why
  565. scale = expand_masks_tracing_scale(M, padding)
  566. else:
  567. scale = float(M + 2 * padding) / M
  568. padded_mask = F.pad(mask, (padding,) * 4)
  569. return padded_mask, scale
  570. def paste_mask_in_image(mask, box, im_h, im_w):
  571. # type: (Tensor, Tensor, int, int) -> Tensor
  572. TO_REMOVE = 1
  573. w = int(box[2] - box[0] + TO_REMOVE)
  574. h = int(box[3] - box[1] + TO_REMOVE)
  575. w = max(w, 1)
  576. h = max(h, 1)
  577. # Set shape to [batchxCxHxW]
  578. mask = mask.expand((1, 1, -1, -1))
  579. # Resize mask
  580. mask = F.interpolate(mask, size=(h, w), mode="bilinear", align_corners=False)
  581. mask = mask[0][0]
  582. im_mask = torch.zeros((im_h, im_w), dtype=mask.dtype, device=mask.device)
  583. x_0 = max(box[0], 0)
  584. x_1 = min(box[2] + 1, im_w)
  585. y_0 = max(box[1], 0)
  586. y_1 = min(box[3] + 1, im_h)
  587. im_mask[y_0:y_1, x_0:x_1] = mask[(y_0 - box[1]) : (y_1 - box[1]), (x_0 - box[0]) : (x_1 - box[0])]
  588. return im_mask
  589. def _onnx_paste_mask_in_image(mask, box, im_h, im_w):
  590. one = torch.ones(1, dtype=torch.int64)
  591. zero = torch.zeros(1, dtype=torch.int64)
  592. w = box[2] - box[0] + one
  593. h = box[3] - box[1] + one
  594. w = torch.max(torch.cat((w, one)))
  595. h = torch.max(torch.cat((h, one)))
  596. # Set shape to [batchxCxHxW]
  597. mask = mask.expand((1, 1, mask.size(0), mask.size(1)))
  598. # Resize mask
  599. mask = F.interpolate(mask, size=(int(h), int(w)), mode="bilinear", align_corners=False)
  600. mask = mask[0][0]
  601. x_0 = torch.max(torch.cat((box[0].unsqueeze(0), zero)))
  602. x_1 = torch.min(torch.cat((box[2].unsqueeze(0) + one, im_w.unsqueeze(0))))
  603. y_0 = torch.max(torch.cat((box[1].unsqueeze(0), zero)))
  604. y_1 = torch.min(torch.cat((box[3].unsqueeze(0) + one, im_h.unsqueeze(0))))
  605. unpaded_im_mask = mask[(y_0 - box[1]) : (y_1 - box[1]), (x_0 - box[0]) : (x_1 - box[0])]
  606. # TODO : replace below with a dynamic padding when support is added in ONNX
  607. # pad y
  608. zeros_y0 = torch.zeros(y_0, unpaded_im_mask.size(1))
  609. zeros_y1 = torch.zeros(im_h - y_1, unpaded_im_mask.size(1))
  610. concat_0 = torch.cat((zeros_y0, unpaded_im_mask.to(dtype=torch.float32), zeros_y1), 0)[0:im_h, :]
  611. # pad x
  612. zeros_x0 = torch.zeros(concat_0.size(0), x_0)
  613. zeros_x1 = torch.zeros(concat_0.size(0), im_w - x_1)
  614. im_mask = torch.cat((zeros_x0, concat_0, zeros_x1), 1)[:, :im_w]
  615. return im_mask
  616. @torch.jit._script_if_tracing
  617. def _onnx_paste_masks_in_image_loop(masks, boxes, im_h, im_w):
  618. res_append = torch.zeros(0, im_h, im_w)
  619. for i in range(masks.size(0)):
  620. mask_res = _onnx_paste_mask_in_image(masks[i][0], boxes[i], im_h, im_w)
  621. mask_res = mask_res.unsqueeze(0)
  622. res_append = torch.cat((res_append, mask_res))
  623. return res_append
  624. def paste_masks_in_image(masks, boxes, img_shape, padding=1):
  625. # type: (Tensor, Tensor, Tuple[int, int], int) -> Tensor
  626. masks, scale = expand_masks(masks, padding=padding)
  627. boxes = expand_boxes(boxes, scale).to(dtype=torch.int64)
  628. im_h, im_w = img_shape
  629. if torchvision._is_tracing():
  630. return _onnx_paste_masks_in_image_loop(
  631. masks, boxes, torch.scalar_tensor(im_h, dtype=torch.int64), torch.scalar_tensor(im_w, dtype=torch.int64)
  632. )[:, None]
  633. res = [paste_mask_in_image(m[0], b, im_h, im_w) for m, b in zip(masks, boxes)]
  634. if len(res) > 0:
  635. ret = torch.stack(res, dim=0)[:, None]
  636. else:
  637. ret = masks.new_empty((0, 1, im_h, im_w))
  638. return ret
  639. class RoIHeads(nn.Module):
  640. __annotations__ = {
  641. "box_coder": det_utils.BoxCoder,
  642. "proposal_matcher": det_utils.Matcher,
  643. "fg_bg_sampler": det_utils.BalancedPositiveNegativeSampler,
  644. }
  645. def __init__(
  646. self,
  647. box_roi_pool,
  648. box_head,
  649. box_predictor,
  650. # Faster R-CNN training
  651. fg_iou_thresh,
  652. bg_iou_thresh,
  653. batch_size_per_image,
  654. positive_fraction,
  655. bbox_reg_weights,
  656. # Faster R-CNN inference
  657. score_thresh,
  658. nms_thresh,
  659. detections_per_img,
  660. # Line
  661. line_roi_pool=None,
  662. line_head=None,
  663. line_predictor=None,
  664. # Mask
  665. mask_roi_pool=None,
  666. mask_head=None,
  667. mask_predictor=None,
  668. keypoint_roi_pool=None,
  669. keypoint_head=None,
  670. keypoint_predictor=None,
  671. ):
  672. super().__init__()
  673. self.box_similarity = box_ops.box_iou
  674. # assign ground-truth boxes for each proposal
  675. self.proposal_matcher = det_utils.Matcher(fg_iou_thresh, bg_iou_thresh, allow_low_quality_matches=False)
  676. self.fg_bg_sampler = det_utils.BalancedPositiveNegativeSampler(batch_size_per_image, positive_fraction)
  677. if bbox_reg_weights is None:
  678. bbox_reg_weights = (10.0, 10.0, 5.0, 5.0)
  679. self.box_coder = det_utils.BoxCoder(bbox_reg_weights)
  680. self.box_roi_pool = box_roi_pool
  681. self.box_head = box_head
  682. self.box_predictor = box_predictor
  683. self.score_thresh = score_thresh
  684. self.nms_thresh = nms_thresh
  685. self.detections_per_img = detections_per_img
  686. self.line_roi_pool = line_roi_pool
  687. self.line_head = line_head
  688. self.line_predictor = line_predictor
  689. self.mask_roi_pool = mask_roi_pool
  690. self.mask_head = mask_head
  691. self.mask_predictor = mask_predictor
  692. self.keypoint_roi_pool = keypoint_roi_pool
  693. self.keypoint_head = keypoint_head
  694. self.keypoint_predictor = keypoint_predictor
  695. def has_mask(self):
  696. if self.mask_roi_pool is None:
  697. return False
  698. if self.mask_head is None:
  699. return False
  700. if self.mask_predictor is None:
  701. return False
  702. return True
  703. def has_keypoint(self):
  704. if self.keypoint_roi_pool is None:
  705. return False
  706. if self.keypoint_head is None:
  707. return False
  708. if self.keypoint_predictor is None:
  709. return False
  710. return True
  711. def has_line(self):
  712. if self.line_roi_pool is None:
  713. return False
  714. if self.line_head is None:
  715. return False
  716. if self.line_predictor is None:
  717. return False
  718. return True
  719. def assign_targets_to_proposals(self, proposals, gt_boxes, gt_labels):
  720. # type: (List[Tensor], List[Tensor], List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]
  721. matched_idxs = []
  722. labels = []
  723. for proposals_in_image, gt_boxes_in_image, gt_labels_in_image in zip(proposals, gt_boxes, gt_labels):
  724. if gt_boxes_in_image.numel() == 0:
  725. # Background image
  726. device = proposals_in_image.device
  727. clamped_matched_idxs_in_image = torch.zeros(
  728. (proposals_in_image.shape[0],), dtype=torch.int64, device=device
  729. )
  730. labels_in_image = torch.zeros((proposals_in_image.shape[0],), dtype=torch.int64, device=device)
  731. else:
  732. # set to self.box_similarity when https://github.com/pytorch/pytorch/issues/27495 lands
  733. match_quality_matrix = box_ops.box_iou(gt_boxes_in_image, proposals_in_image)
  734. matched_idxs_in_image = self.proposal_matcher(match_quality_matrix)
  735. clamped_matched_idxs_in_image = matched_idxs_in_image.clamp(min=0)
  736. labels_in_image = gt_labels_in_image[clamped_matched_idxs_in_image]
  737. labels_in_image = labels_in_image.to(dtype=torch.int64)
  738. # Label background (below the low threshold)
  739. bg_inds = matched_idxs_in_image == self.proposal_matcher.BELOW_LOW_THRESHOLD
  740. labels_in_image[bg_inds] = 0
  741. # Label ignore proposals (between low and high thresholds)
  742. ignore_inds = matched_idxs_in_image == self.proposal_matcher.BETWEEN_THRESHOLDS
  743. labels_in_image[ignore_inds] = -1 # -1 is ignored by sampler
  744. matched_idxs.append(clamped_matched_idxs_in_image)
  745. labels.append(labels_in_image)
  746. return matched_idxs, labels
  747. def subsample(self, labels):
  748. # type: (List[Tensor]) -> List[Tensor]
  749. sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels)
  750. sampled_inds = []
  751. for img_idx, (pos_inds_img, neg_inds_img) in enumerate(zip(sampled_pos_inds, sampled_neg_inds)):
  752. img_sampled_inds = torch.where(pos_inds_img | neg_inds_img)[0]
  753. sampled_inds.append(img_sampled_inds)
  754. return sampled_inds
  755. def add_gt_proposals(self, proposals, gt_boxes):
  756. # type: (List[Tensor], List[Tensor]) -> List[Tensor]
  757. proposals = [torch.cat((proposal, gt_box)) for proposal, gt_box in zip(proposals, gt_boxes)]
  758. return proposals
  759. def check_targets(self, targets):
  760. # type: (Optional[List[Dict[str, Tensor]]]) -> None
  761. if targets is None:
  762. raise ValueError("targets should not be None")
  763. if not all(["boxes" in t for t in targets]):
  764. raise ValueError("Every element of targets should have a boxes key")
  765. if not all(["labels" in t for t in targets]):
  766. raise ValueError("Every element of targets should have a labels key")
  767. if self.has_mask():
  768. if not all(["masks" in t for t in targets]):
  769. raise ValueError("Every element of targets should have a masks key")
  770. def select_training_samples(
  771. self,
  772. proposals, # type: List[Tensor]
  773. targets, # type: Optional[List[Dict[str, Tensor]]]
  774. ):
  775. # type: (...) -> Tuple[List[Tensor], List[Tensor], List[Tensor], List[Tensor]]
  776. self.check_targets(targets)
  777. if targets is None:
  778. raise ValueError("targets should not be None")
  779. dtype = proposals[0].dtype
  780. device = proposals[0].device
  781. gt_boxes = [t["boxes"].to(dtype) for t in targets]
  782. gt_labels = [t["labels"] for t in targets]
  783. # append ground-truth bboxes to propos
  784. proposals = self.add_gt_proposals(proposals, gt_boxes)
  785. # get matching gt indices for each proposal
  786. matched_idxs, labels = self.assign_targets_to_proposals(proposals, gt_boxes, gt_labels)
  787. # sample a fixed proportion of positive-negative proposals
  788. sampled_inds = self.subsample(labels)
  789. matched_gt_boxes = []
  790. num_images = len(proposals)
  791. for img_id in range(num_images):
  792. img_sampled_inds = sampled_inds[img_id]
  793. proposals[img_id] = proposals[img_id][img_sampled_inds]
  794. labels[img_id] = labels[img_id][img_sampled_inds]
  795. matched_idxs[img_id] = matched_idxs[img_id][img_sampled_inds]
  796. gt_boxes_in_image = gt_boxes[img_id]
  797. if gt_boxes_in_image.numel() == 0:
  798. gt_boxes_in_image = torch.zeros((1, 4), dtype=dtype, device=device)
  799. matched_gt_boxes.append(gt_boxes_in_image[matched_idxs[img_id]])
  800. regression_targets = self.box_coder.encode(matched_gt_boxes, proposals)
  801. return proposals, matched_idxs, labels, regression_targets
  802. def postprocess_detections(
  803. self,
  804. class_logits, # type: Tensor
  805. box_regression, # type: Tensor
  806. proposals, # type: List[Tensor]
  807. image_shapes, # type: List[Tuple[int, int]]
  808. ):
  809. # type: (...) -> Tuple[List[Tensor], List[Tensor], List[Tensor]]
  810. device = class_logits.device
  811. num_classes = class_logits.shape[-1]
  812. boxes_per_image = [boxes_in_image.shape[0] for boxes_in_image in proposals]
  813. pred_boxes = self.box_coder.decode(box_regression, proposals)
  814. pred_scores = F.softmax(class_logits, -1)
  815. pred_boxes_list = pred_boxes.split(boxes_per_image, 0)
  816. pred_scores_list = pred_scores.split(boxes_per_image, 0)
  817. all_boxes = []
  818. all_scores = []
  819. all_labels = []
  820. for boxes, scores, image_shape in zip(pred_boxes_list, pred_scores_list, image_shapes):
  821. boxes = box_ops.clip_boxes_to_image(boxes, image_shape)
  822. # create labels for each prediction
  823. labels = torch.arange(num_classes, device=device)
  824. labels = labels.view(1, -1).expand_as(scores)
  825. # remove predictions with the background label
  826. boxes = boxes[:, 1:]
  827. scores = scores[:, 1:]
  828. labels = labels[:, 1:]
  829. # batch everything, by making every class prediction be a separate instance
  830. boxes = boxes.reshape(-1, 4)
  831. scores = scores.reshape(-1)
  832. labels = labels.reshape(-1)
  833. # remove low scoring boxes
  834. inds = torch.where(scores > self.score_thresh)[0]
  835. boxes, scores, labels = boxes[inds], scores[inds], labels[inds]
  836. # remove empty boxes
  837. keep = box_ops.remove_small_boxes(boxes, min_size=1e-2)
  838. boxes, scores, labels = boxes[keep], scores[keep], labels[keep]
  839. # non-maximum suppression, independently done per class
  840. keep = box_ops.batched_nms(boxes, scores, labels, self.nms_thresh)
  841. # keep only topk scoring predictions
  842. keep = keep[: self.detections_per_img]
  843. boxes, scores, labels = boxes[keep], scores[keep], labels[keep]
  844. all_boxes.append(boxes)
  845. all_scores.append(scores)
  846. all_labels.append(labels)
  847. return all_boxes, all_scores, all_labels
  848. def forward(
  849. self,
  850. features, # type: Dict[str, Tensor]
  851. proposals, # type: List[Tensor]
  852. image_shapes, # type: List[Tuple[int, int]]
  853. targets=None, # type: Optional[List[Dict[str, Tensor]]]
  854. ):
  855. # type: (...) -> Tuple[List[Dict[str, Tensor]], Dict[str, Tensor]]
  856. """
  857. Args:
  858. features (List[Tensor])
  859. proposals (List[Tensor[N, 4]])
  860. image_shapes (List[Tuple[H, W]])
  861. targets (List[Dict])
  862. """
  863. print(f'roihead forward!!!')
  864. if targets is not None:
  865. for t in targets:
  866. # TODO: https://github.com/pytorch/pytorch/issues/26731
  867. floating_point_types = (torch.float, torch.double, torch.half)
  868. if not t["boxes"].dtype in floating_point_types:
  869. raise TypeError(f"target boxes must of float type, instead got {t['boxes'].dtype}")
  870. if not t["labels"].dtype == torch.int64:
  871. raise TypeError(f"target labels must of int64 type, instead got {t['labels'].dtype}")
  872. if self.has_keypoint():
  873. if not t["keypoints"].dtype == torch.float32:
  874. raise TypeError(f"target keypoints must of float type, instead got {t['keypoints'].dtype}")
  875. if self.training:
  876. proposals, matched_idxs, labels, regression_targets = self.select_training_samples(proposals, targets)
  877. else:
  878. if targets is not None:
  879. proposals, matched_idxs, labels, regression_targets = self.select_training_samples(proposals, targets)
  880. else:
  881. labels = None
  882. regression_targets = None
  883. matched_idxs = None
  884. box_features = self.box_roi_pool(features, proposals, image_shapes)
  885. box_features = self.box_head(box_features)
  886. class_logits, box_regression = self.box_predictor(box_features)
  887. result: List[Dict[str, torch.Tensor]] = []
  888. losses = {}
  889. # _, C, H, W = features['0'].shape # 忽略 batch_size,因为我们只关心 C, H, W
  890. if self.training:
  891. if labels is None:
  892. raise ValueError("labels cannot be None")
  893. if regression_targets is None:
  894. raise ValueError("regression_targets cannot be None")
  895. print(f'boxes compute losses')
  896. loss_classifier, loss_box_reg = fastrcnn_loss(class_logits, box_regression, labels, regression_targets)
  897. losses = {"loss_classifier": loss_classifier, "loss_box_reg": loss_box_reg}
  898. else:
  899. if targets is not None:
  900. loss_classifier, loss_box_reg = fastrcnn_loss(class_logits, box_regression, labels, regression_targets)
  901. losses = {"loss_classifier": loss_classifier, "loss_box_reg": loss_box_reg}
  902. boxes, scores, labels = self.postprocess_detections(class_logits, box_regression, proposals,
  903. image_shapes)
  904. num_images = len(boxes)
  905. for i in range(num_images):
  906. result.append(
  907. {
  908. "boxes": boxes[i],
  909. "labels": labels[i],
  910. "scores": scores[i],
  911. }
  912. )
  913. if self.has_line():
  914. print(f'roi_heads forward has_line()!!!!')
  915. line_proposals = [p["boxes"] for p in result]
  916. print(f'boxes_proposals:{len(line_proposals)}')
  917. # if line_proposals is None or len(line_proposals) == 0:
  918. # # 返回空特征或者跳过该部分计算
  919. # return torch.empty(0, C, H, W).to(features['0'].device)
  920. if self.training:
  921. # during training, only focus on positive boxes
  922. num_images = len(proposals)
  923. print(f'num_images:{num_images}')
  924. line_proposals = []
  925. pos_matched_idxs = []
  926. if matched_idxs is None:
  927. raise ValueError("if in trainning, matched_idxs should not be None")
  928. for img_id in range(num_images):
  929. pos = torch.where(labels[img_id] > 0)[0]
  930. line_proposals.append(proposals[img_id][pos])
  931. pos_matched_idxs.append(matched_idxs[img_id][pos])
  932. else:
  933. if targets is not None:
  934. pos_matched_idxs = []
  935. num_images = len(proposals)
  936. line_proposals = []
  937. print(f'val num_images:{num_images}')
  938. if matched_idxs is None:
  939. raise ValueError("if in trainning, matched_idxs should not be None")
  940. for img_id in range(num_images):
  941. pos = torch.where(labels[img_id] > 0)[0]
  942. line_proposals.append(proposals[img_id][pos])
  943. pos_matched_idxs.append(matched_idxs[img_id][pos])
  944. else:
  945. pos_matched_idxs = None
  946. print(f'line_proposals:{len(line_proposals)}')
  947. line_features = self.line_roi_pool(features, line_proposals, image_shapes)
  948. print(f'line_features from line_roi_pool:{line_features.shape}')
  949. line_features = self.line_head(line_features)
  950. print(f'line_features from line_head:{line_features.shape}')
  951. line_logits = self.line_predictor(line_features)
  952. print(f'line_logits:{line_logits.shape}')
  953. loss_line = {}
  954. loss_line_iou={}
  955. img_size=512
  956. if self.training:
  957. if targets is None or pos_matched_idxs is None:
  958. raise ValueError("both targets and pos_matched_idxs should not be None when in training mode")
  959. gt_lines = [t["lines"] for t in targets]
  960. rcnn_loss_line = lines_point_pair_loss(
  961. line_logits, line_proposals, gt_lines, pos_matched_idxs
  962. )
  963. # iou_loss = line_iou_loss(line_logits, line_proposals, gt_lines, pos_matched_idxs,img_size)
  964. loss_line = {"loss_line": rcnn_loss_line}
  965. # loss_line_iou = {'loss_line_iou': iou_loss}
  966. else:
  967. if targets is not None:
  968. gt_lines = [t["lines"] for t in targets]
  969. rcnn_loss_lines = lines_point_pair_loss(
  970. line_logits, line_proposals, gt_lines, pos_matched_idxs
  971. )
  972. loss_line = {"loss_line": rcnn_loss_lines}
  973. # iou_loss =line_iou_loss(line_logits, line_proposals,gt_lines,pos_matched_idxs,img_size)
  974. # loss_line_iou={'loss_line_iou':iou_loss}
  975. else:
  976. if line_logits is None or line_proposals is None:
  977. raise ValueError(
  978. "both keypoint_logits and keypoint_proposals should not be None when not in training mode"
  979. )
  980. lines_probs, kp_scores = line_inference(line_logits, line_proposals)
  981. for keypoint_prob, kps, r in zip(lines_probs, kp_scores, result):
  982. r["lines"] = keypoint_prob
  983. r["liness_scores"] = kps
  984. losses.update(loss_line)
  985. losses.update(loss_line_iou)
  986. if self.has_mask():
  987. mask_proposals = [p["boxes"] for p in result]
  988. if self.training:
  989. if matched_idxs is None:
  990. raise ValueError("if in training, matched_idxs should not be None")
  991. # during training, only focus on positive boxes
  992. num_images = len(proposals)
  993. mask_proposals = []
  994. pos_matched_idxs = []
  995. for img_id in range(num_images):
  996. pos = torch.where(labels[img_id] > 0)[0]
  997. mask_proposals.append(proposals[img_id][pos])
  998. pos_matched_idxs.append(matched_idxs[img_id][pos])
  999. else:
  1000. pos_matched_idxs = None
  1001. if self.mask_roi_pool is not None:
  1002. mask_features = self.mask_roi_pool(features, mask_proposals, image_shapes)
  1003. mask_features = self.mask_head(mask_features)
  1004. mask_logits = self.mask_predictor(mask_features)
  1005. else:
  1006. raise Exception("Expected mask_roi_pool to be not None")
  1007. loss_mask = {}
  1008. if self.training:
  1009. if targets is None or pos_matched_idxs is None or mask_logits is None:
  1010. raise ValueError("targets, pos_matched_idxs, mask_logits cannot be None when training")
  1011. gt_masks = [t["masks"] for t in targets]
  1012. gt_labels = [t["labels"] for t in targets]
  1013. rcnn_loss_mask = maskrcnn_loss(mask_logits, mask_proposals, gt_masks, gt_labels, pos_matched_idxs)
  1014. loss_mask = {"loss_mask": rcnn_loss_mask}
  1015. else:
  1016. labels = [r["labels"] for r in result]
  1017. masks_probs = maskrcnn_inference(mask_logits, labels)
  1018. for mask_prob, r in zip(masks_probs, result):
  1019. r["masks"] = mask_prob
  1020. losses.update(loss_mask)
  1021. # keep none checks in if conditional so torchscript will conditionally
  1022. # compile each branch
  1023. if self.has_keypoint():
  1024. keypoint_proposals = [p["boxes"] for p in result]
  1025. if self.training:
  1026. # during training, only focus on positive boxes
  1027. num_images = len(proposals)
  1028. keypoint_proposals = []
  1029. pos_matched_idxs = []
  1030. if matched_idxs is None:
  1031. raise ValueError("if in trainning, matched_idxs should not be None")
  1032. for img_id in range(num_images):
  1033. pos = torch.where(labels[img_id] > 0)[0]
  1034. keypoint_proposals.append(proposals[img_id][pos])
  1035. pos_matched_idxs.append(matched_idxs[img_id][pos])
  1036. else:
  1037. pos_matched_idxs = None
  1038. keypoint_features = self.line_roi_pool(features, keypoint_proposals, image_shapes)
  1039. keypoint_features = self.line_head(keypoint_features)
  1040. keypoint_logits = self.line_predictor(keypoint_features)
  1041. loss_keypoint = {}
  1042. if self.training:
  1043. if targets is None or pos_matched_idxs is None:
  1044. raise ValueError("both targets and pos_matched_idxs should not be None when in training mode")
  1045. gt_keypoints = [t["keypoints"] for t in targets]
  1046. rcnn_loss_keypoint = keypointrcnn_loss(
  1047. keypoint_logits, keypoint_proposals, gt_keypoints, pos_matched_idxs
  1048. )
  1049. loss_keypoint = {"loss_keypoint": rcnn_loss_keypoint}
  1050. else:
  1051. if keypoint_logits is None or keypoint_proposals is None:
  1052. raise ValueError(
  1053. "both keypoint_logits and keypoint_proposals should not be None when not in training mode"
  1054. )
  1055. keypoints_probs, kp_scores = keypointrcnn_inference(keypoint_logits, keypoint_proposals)
  1056. for keypoint_prob, kps, r in zip(keypoints_probs, kp_scores, result):
  1057. r["keypoints"] = keypoint_prob
  1058. r["keypoints_scores"] = kps
  1059. losses.update(loss_keypoint)
  1060. return result, losses