line_detect.py 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701
  1. import os
  2. from typing import Any, Callable, List, Optional, Tuple
  3. import torch
  4. from torch import nn
  5. from libs.vision_libs.models.detection.anchor_utils import AnchorGenerator
  6. from libs.vision_libs.models.detection.rpn import RPNHead, RegionProposalNetwork
  7. from libs.vision_libs.models.detection.transform import GeneralizedRCNNTransform
  8. from libs.vision_libs.ops import misc as misc_nn_ops, MultiScaleRoIAlign
  9. from libs.vision_libs.models.detection.backbone_utils import BackboneWithFPN, resnet_fpn_backbone
  10. from libs.vision_libs.models.detection.faster_rcnn import TwoMLPHead
  11. from models.line_detect.heads.arc.arc_heads import ArcHeads
  12. from models.line_detect.heads.circle.circle_heads import CircleHeads, CirclePredictor
  13. from .heads.decoder import FPNDecoder
  14. from models.line_detect.heads.line.line_heads import LinePredictor
  15. from models.line_detect.heads.point.point_heads import PointHeads, PointPredictor
  16. from .heads.ins.ins_predictor import ArcEquationPredictor
  17. from .loi_heads import RoIHeads
  18. from .trainer import Trainer
  19. from ..base.backbone_factory import get_anchor_generator, MaxVitBackbone, \
  20. get_swin_transformer_fpn, get_efficientnetv2_fpn
  21. # from ..base.backbone_factory import get_convnext_fpn, get_anchor_generator
  22. from ..base.base_detection_net import BaseDetectionNet
  23. import torch.nn.functional as F
  24. from ..base.high_reso_maxvit import maxvit_with_fpn
  25. from ..base.high_reso_resnet import resnet50fpn, resnet18fpn, resnet101fpn, Bottleneck
  26. __all__ = [
  27. "LineDetect",
  28. "linedetect_resnet50_fpn",
  29. ]
  30. from ..line_net.line_detect import LineHeads
  31. def _default_anchorgen():
  32. anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
  33. aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
  34. return AnchorGenerator(anchor_sizes, aspect_ratios)
  35. class LineDetect(BaseDetectionNet):
  36. def __init__(
  37. self,
  38. backbone,
  39. num_classes=3,
  40. # transform parameters
  41. min_size=512,
  42. max_size=512,
  43. image_mean=None,
  44. image_std=None,
  45. # RPN parameters
  46. rpn_anchor_generator=None,
  47. rpn_head=None,
  48. rpn_pre_nms_top_n_train=2000,
  49. rpn_pre_nms_top_n_test=1000,
  50. rpn_post_nms_top_n_train=2000,
  51. rpn_post_nms_top_n_test=1000,
  52. rpn_nms_thresh=0.7,
  53. rpn_fg_iou_thresh=0.7,
  54. rpn_bg_iou_thresh=0.3,
  55. rpn_batch_size_per_image=256,
  56. rpn_positive_fraction=0.5,
  57. rpn_score_thresh=0.0,
  58. # Box parameters
  59. box_roi_pool=None,
  60. box_head=None,
  61. box_predictor=None,
  62. box_score_thresh=0.05,
  63. box_nms_thresh=0.5,
  64. box_detections_per_img=200,
  65. box_fg_iou_thresh=0.7,
  66. box_bg_iou_thresh=0.3,
  67. box_batch_size_per_image=512,
  68. box_positive_fraction=0.25,
  69. bbox_reg_weights=None,
  70. # line parameters
  71. line_roi_pool=None,
  72. line_head=None,
  73. line_predictor=None,
  74. # point parameters
  75. point_roi_pool=None,
  76. point_head=None,
  77. point_predictor=None,
  78. ins_head=None,
  79. ins_predictor=None,
  80. circle_roi_pool=None,
  81. # arc parameters
  82. arc_roi_pool=None,
  83. arc_head=None,
  84. arc_predictor=None,
  85. num_points=4,
  86. detect_point=False,
  87. detect_line=False,
  88. detect_arc=True,
  89. detect_ins=False,
  90. **kwargs,
  91. ):
  92. out_channels = backbone.out_channels
  93. if rpn_anchor_generator is None:
  94. rpn_anchor_generator = _default_anchorgen()
  95. if rpn_head is None:
  96. rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
  97. rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
  98. rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)
  99. rpn = RegionProposalNetwork(
  100. rpn_anchor_generator,
  101. rpn_head,
  102. rpn_fg_iou_thresh,
  103. rpn_bg_iou_thresh,
  104. rpn_batch_size_per_image,
  105. rpn_positive_fraction,
  106. rpn_pre_nms_top_n,
  107. rpn_post_nms_top_n,
  108. rpn_nms_thresh,
  109. score_thresh=rpn_score_thresh,
  110. )
  111. if box_roi_pool is None:
  112. box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2)
  113. if box_head is None:
  114. resolution = box_roi_pool.output_size[0]
  115. representation_size = 1024
  116. box_head = TwoMLPHead(out_channels * resolution**2, representation_size)
  117. if box_predictor is None:
  118. representation_size = 1024
  119. box_predictor = ObjectionPredictor(representation_size, num_classes)
  120. roi_heads = RoIHeads(
  121. # Box
  122. box_roi_pool,
  123. box_head,
  124. box_predictor,
  125. box_fg_iou_thresh,
  126. box_bg_iou_thresh,
  127. box_batch_size_per_image,
  128. box_positive_fraction,
  129. bbox_reg_weights,
  130. box_score_thresh,
  131. box_nms_thresh,
  132. box_detections_per_img,
  133. detect_point=detect_point,
  134. detect_line=detect_line,
  135. detect_arc=detect_arc,
  136. detect_circle=detect_ins,
  137. )
  138. if image_mean is None:
  139. image_mean = [0.485, 0.456, 0.406]
  140. if image_std is None:
  141. image_std = [0.229, 0.224, 0.225]
  142. transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std, **kwargs)
  143. super().__init__(backbone, rpn, roi_heads, transform)
  144. if line_head is None and detect_line:
  145. layers = tuple(num_points for _ in range(8))
  146. line_head = LineHeads(8, layers)
  147. if line_predictor is None and detect_line:
  148. # keypoint_dim_reduced = 512 # == keypoint_layers[-1]
  149. line_predictor = LinePredictor(in_channels=256)
  150. if point_head is None and detect_point:
  151. layers = tuple(num_points for _ in range(8))
  152. point_head = PointHeads(8, layers)
  153. if point_predictor is None and detect_point:
  154. # keypoint_dim_reduced = 512 # == keypoint_layers[-1]
  155. point_predictor = PointPredictor(in_channels=256)
  156. if detect_arc and arc_head is None:
  157. layers = tuple(num_points for _ in range(8))
  158. arc_head=ArcHeads(8,layers)
  159. if detect_arc and arc_predictor is None:
  160. layers = tuple(num_points for _ in range(8))
  161. # arc_predictor=ArcPredictor(in_channels=256,out_channels=1)
  162. arc_predictor=FPNDecoder(Bottleneck)
  163. if detect_ins and ins_head is None:
  164. layers = tuple(num_points for _ in range(8))
  165. ins_head = FPNDecoder(Bottleneck)
  166. if detect_ins and ins_predictor is None:
  167. # layers = tuple(num_points for _ in range(8))
  168. # arc_predictor=ArcPredictor(in_channels=256,out_channels=1)
  169. # circle_predictor = CirclePredictor(in_channels=256,out_channels=4)
  170. ins_predictor=ArcEquationPredictor()
  171. self.roi_heads.line_roi_pool = line_roi_pool
  172. self.roi_heads.line_head = line_head
  173. self.roi_heads.line_predictor = line_predictor
  174. self.roi_heads.point_roi_pool = point_roi_pool
  175. self.roi_heads.point_head = point_head
  176. self.roi_heads.point_predictor = point_predictor
  177. self.roi_heads.arc_roi_pool = arc_roi_pool
  178. self.roi_heads.arc_head = arc_head
  179. self.roi_heads.arc_predictor = arc_predictor
  180. self.roi_heads.ins_roi_pool = circle_roi_pool
  181. self.roi_heads.ins_head = ins_head
  182. self.roi_heads.ins_predictor = ins_predictor
  183. def start_train(self, cfg):
  184. # cfg = read_yaml(cfg)
  185. self.trainer = Trainer()
  186. self.trainer.train_from_cfg(model=self, cfg=cfg)
  187. def load_weights(self, save_path, device='cuda'):
  188. if os.path.exists(save_path):
  189. checkpoint = torch.load(save_path, map_location=device)
  190. self.load_state_dict(checkpoint['model_state_dict'])
  191. # if optimizer is not None:
  192. # optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
  193. # epoch = checkpoint['epoch']
  194. # loss = checkpoint['loss']
  195. # print(f"Loaded best model from {save_path} at epoch {epoch} with loss {loss:.4f}")
  196. print(f"Loaded model from {save_path}")
  197. else:
  198. print(f"No saved model found at {save_path}")
  199. return self
  200. class TwoMLPHead(nn.Module):
  201. """
  202. Standard heads for FPN-based models
  203. Args:
  204. in_channels (int): number of input channels
  205. representation_size (int): size of the intermediate representation
  206. """
  207. def __init__(self, in_channels, representation_size):
  208. super().__init__()
  209. self.fc6 = nn.Linear(in_channels, representation_size)
  210. self.fc7 = nn.Linear(representation_size, representation_size)
  211. def forward(self, x):
  212. x = x.flatten(start_dim=1)
  213. x = F.relu(self.fc6(x))
  214. x = F.relu(self.fc7(x))
  215. return x
  216. class ObjectionConvFCHead(nn.Sequential):
  217. def __init__(
  218. self,
  219. input_size: Tuple[int, int, int],
  220. conv_layers: List[int],
  221. fc_layers: List[int],
  222. norm_layer: Optional[Callable[..., nn.Module]] = None,
  223. ):
  224. """
  225. Args:
  226. input_size (Tuple[int, int, int]): the input size in CHW format.
  227. conv_layers (list): feature dimensions of each Convolution layer
  228. fc_layers (list): feature dimensions of each FCN layer
  229. norm_layer (callable, optional): Module specifying the normalization layer to use. Default: None
  230. """
  231. in_channels, in_height, in_width = input_size
  232. blocks = []
  233. previous_channels = in_channels
  234. for current_channels in conv_layers:
  235. blocks.append(misc_nn_ops.Conv2dNormActivation(previous_channels, current_channels, norm_layer=norm_layer))
  236. previous_channels = current_channels
  237. blocks.append(nn.Flatten())
  238. previous_channels = previous_channels * in_height * in_width
  239. for current_channels in fc_layers:
  240. blocks.append(nn.Linear(previous_channels, current_channels))
  241. blocks.append(nn.ReLU(inplace=True))
  242. previous_channels = current_channels
  243. super().__init__(*blocks)
  244. for layer in self.modules():
  245. if isinstance(layer, nn.Conv2d):
  246. nn.init.kaiming_normal_(layer.weight, mode="fan_out", nonlinearity="relu")
  247. if layer.bias is not None:
  248. nn.init.zeros_(layer.bias)
  249. class ObjectionPredictor(nn.Module):
  250. """
  251. Standard classification + bounding box regression layers
  252. for Fast R-CNN.
  253. Args:
  254. in_channels (int): number of input channels
  255. num_classes (int): number of output classes (including background)
  256. """
  257. def __init__(self, in_channels, num_classes):
  258. super().__init__()
  259. self.cls_score = nn.Linear(in_channels, num_classes)
  260. self.bbox_pred = nn.Linear(in_channels, num_classes * 4)
  261. def forward(self, x):
  262. if x.dim() == 4:
  263. torch._assert(
  264. list(x.shape[2:]) == [1, 1],
  265. f"x has the wrong shape, expecting the last two dimensions to be [1,1] instead of {list(x.shape[2:])}",
  266. )
  267. x = x.flatten(start_dim=1)
  268. scores = self.cls_score(x)
  269. bbox_deltas = self.bbox_pred(x)
  270. return scores, bbox_deltas
  271. def linedetect_newresnet18fpn(
  272. *,
  273. num_classes: Optional[int] = None,
  274. num_points:Optional[int] = None,
  275. **kwargs: Any,
  276. ) -> LineDetect:
  277. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  278. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  279. if num_classes is None:
  280. num_classes = 5
  281. if num_points is None:
  282. num_points = 4
  283. size=768
  284. backbone =resnet18fpn()
  285. featmap_names=['0', '1', '2', '3','4','pool']
  286. # print(f'featmap_names:{featmap_names}')
  287. roi_pooler = MultiScaleRoIAlign(
  288. featmap_names=featmap_names,
  289. output_size=7,
  290. sampling_ratio=2
  291. )
  292. num_features=len(featmap_names)
  293. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  294. # print(f'anchor_sizes:{anchor_sizes}')
  295. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  296. # print(f'aspect_ratios:{aspect_ratios}')
  297. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  298. model = LineDetect(backbone,
  299. num_classes, min_size=size, max_size=size, num_points=num_points,
  300. rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler,
  301. detect_point=False,
  302. detect_line=False,
  303. detect_arc=False,
  304. detect_ins=True,
  305. **kwargs)
  306. return model
  307. def linedetect_newresnet50fpn(
  308. *,
  309. num_classes: Optional[int] = None,
  310. num_points:Optional[int] = None,
  311. **kwargs: Any,
  312. ) -> LineDetect:
  313. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  314. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  315. if num_classes is None:
  316. num_classes = 5
  317. if num_points is None:
  318. num_points = 4
  319. size=768
  320. backbone =resnet50fpn(out_channels=256)
  321. featmap_names=['0', '1', '2', '3','4','pool']
  322. # print(f'featmap_names:{featmap_names}')
  323. roi_pooler = MultiScaleRoIAlign(
  324. featmap_names=featmap_names,
  325. output_size=7,
  326. sampling_ratio=2
  327. )
  328. num_features=len(featmap_names)
  329. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  330. # print(f'anchor_sizes:{anchor_sizes}')
  331. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  332. # print(f'aspect_ratios:{aspect_ratios}')
  333. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  334. model = LineDetect(backbone, num_classes, min_size=size, max_size=size, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler,
  335. detect_point=False,
  336. detect_line=False,
  337. detect_arc=False,
  338. detect_ins=True,
  339. **kwargs)
  340. return model
  341. def linedetect_newresnet101fpn(
  342. *,
  343. num_classes: Optional[int] = None,
  344. num_points:Optional[int] = None,
  345. **kwargs: Any,
  346. ) -> LineDetect:
  347. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  348. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  349. if num_classes is None:
  350. num_classes = 5
  351. if num_points is None:
  352. num_points = 3
  353. size=768
  354. backbone =resnet101fpn(out_channels=256)
  355. featmap_names=['0', '1', '2', '3','4','pool']
  356. # print(f'featmap_names:{featmap_names}')
  357. roi_pooler = MultiScaleRoIAlign(
  358. featmap_names=featmap_names,
  359. output_size=7,
  360. sampling_ratio=2
  361. )
  362. num_features=len(featmap_names)
  363. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  364. # print(f'anchor_sizes:{anchor_sizes}')
  365. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  366. # print(f'aspect_ratios:{aspect_ratios}')
  367. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  368. model = LineDetect(backbone, num_classes, min_size=size, max_size=size, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler,
  369. detect_point=False,
  370. detect_line=False,
  371. detect_arc=False,
  372. detect_ins=True,
  373. **kwargs)
  374. return model
  375. def linedetect_newresnet152fpn(
  376. *,
  377. num_classes: Optional[int] = None,
  378. num_points:Optional[int] = None,
  379. **kwargs: Any,
  380. ) -> LineDetect:
  381. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  382. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  383. if num_classes is None:
  384. num_classes = 5
  385. if num_points is None:
  386. num_points = 3
  387. size=768
  388. backbone =resnet101fpn(out_channels=256)
  389. featmap_names=['0', '1', '2', '3','4','pool']
  390. # print(f'featmap_names:{featmap_names}')
  391. roi_pooler = MultiScaleRoIAlign(
  392. featmap_names=featmap_names,
  393. output_size=7,
  394. sampling_ratio=2
  395. )
  396. num_features=len(featmap_names)
  397. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  398. # print(f'anchor_sizes:{anchor_sizes}')
  399. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  400. # print(f'aspect_ratios:{aspect_ratios}')
  401. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  402. model = LineDetect(backbone, num_classes, min_size=size, max_size=size, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler,
  403. detect_point=False,
  404. detect_line=False,
  405. detect_arc=False,
  406. detect_ins=True,
  407. **kwargs)
  408. return model
  409. def linedetect_efficientnet(
  410. *,
  411. num_classes: Optional[int] = None,
  412. num_points:Optional[int] = None,
  413. name: Optional[str] = 'efficientnet_v2_l',
  414. **kwargs: Any,
  415. ) -> LineDetect:
  416. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  417. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  418. if num_classes is None:
  419. num_classes = 5
  420. if num_points is None:
  421. num_points = 3
  422. size=224*3
  423. featmap_names = ['0', '1', '2', '3', '4', 'pool']
  424. roi_pooler = MultiScaleRoIAlign(
  425. featmap_names=featmap_names,
  426. output_size=7,
  427. sampling_ratio=2
  428. )
  429. backbone_with_fpn=get_efficientnetv2_fpn(name=name)
  430. test_input = torch.randn(1, 3,size,size)
  431. model = LineDetect(
  432. backbone=backbone_with_fpn,
  433. min_size=size,
  434. max_size=size,
  435. num_classes=num_classes, # COCO 数据集有 91 类
  436. rpn_anchor_generator=get_anchor_generator(backbone_with_fpn, test_input=test_input),
  437. box_roi_pool=roi_pooler,
  438. detect_line=False,
  439. detect_point=False,
  440. detect_arc=False,
  441. detect_ins=True,
  442. )
  443. return model
  444. def linedetect_maxvitfpn(
  445. *,
  446. num_classes: Optional[int] = None,
  447. num_points:Optional[int] = None,
  448. **kwargs: Any,
  449. ) -> LineDetect:
  450. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  451. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  452. if num_classes is None:
  453. num_classes = 5
  454. if num_points is None:
  455. num_points = 3
  456. size=224*3
  457. maxvit = MaxVitBackbone(input_size=(size,size))
  458. # print(maxvit.named_children())
  459. # for i,layer in enumerate(maxvit.named_children()):
  460. # print(f'layer:{i}:{layer}')
  461. in_channels_list = [64, 64, 128, 256, 512]
  462. featmap_names = ['0', '1', '2', '3', '4', 'pool']
  463. roi_pooler = MultiScaleRoIAlign(
  464. featmap_names=featmap_names,
  465. output_size=7,
  466. sampling_ratio=2
  467. )
  468. backbone_with_fpn = BackboneWithFPN(
  469. maxvit,
  470. return_layers={'stem': '0', 'block0': '1', 'block1': '2', 'block2': '3', 'block3': '4'},
  471. # 确保这些键对应到实际的层
  472. in_channels_list=in_channels_list,
  473. out_channels=256
  474. )
  475. test_input = torch.randn(1, 3,size,size)
  476. model = LineDetect(
  477. backbone=backbone_with_fpn,
  478. min_size=size,
  479. max_size=size,
  480. num_classes=num_classes, # COCO 数据集有 91 类
  481. rpn_anchor_generator=get_anchor_generator(backbone_with_fpn, test_input=test_input),
  482. box_roi_pool=roi_pooler,
  483. detect_line=False,
  484. detect_point=False,
  485. detect_arc=False,
  486. detect_ins=True,
  487. )
  488. return model
  489. def linedetect_high_maxvitfpn(
  490. *,
  491. num_classes: Optional[int] = None,
  492. num_points:Optional[int] = None,
  493. **kwargs: Any,
  494. ) -> LineDetect:
  495. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  496. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  497. if num_classes is None:
  498. num_classes = 5
  499. if num_points is None:
  500. num_points = 3
  501. size=224*2
  502. maxvitfpn =maxvit_with_fpn(size=size)
  503. # print(maxvit.named_children())
  504. # for i,layer in enumerate(maxvit.named_children()):
  505. # print(f'layer:{i}:{layer}')
  506. in_channels_list = [64,64, 64, 128, 256, 512]
  507. featmap_names = ['0', '1', '2', '3', '4', '5','pool']
  508. roi_pooler = MultiScaleRoIAlign(
  509. featmap_names=featmap_names,
  510. output_size=7,
  511. sampling_ratio=2
  512. )
  513. test_input = torch.randn(1, 3,size,size)
  514. model = LineDetect(
  515. backbone=maxvitfpn,
  516. num_classes=num_classes,
  517. min_size=size,
  518. max_size=size,
  519. rpn_anchor_generator=get_anchor_generator(maxvitfpn, test_input=test_input),
  520. box_roi_pool=roi_pooler
  521. )
  522. return model
  523. def linedetect_swin_transformer_fpn(
  524. *,
  525. num_classes: Optional[int] = None,
  526. num_points:Optional[int] = None,
  527. type='t',
  528. **kwargs: Any,
  529. ) -> LineDetect:
  530. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  531. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  532. if num_classes is None:
  533. num_classes = 3
  534. if num_points is None:
  535. num_points = 3
  536. size=512
  537. backbone_with_fpn, roi_pooler, anchor_generator=get_swin_transformer_fpn(type=type)
  538. # test_input = torch.randn(1, 3,size,size)
  539. model = LineDetect(
  540. backbone=backbone_with_fpn,
  541. min_size=size,
  542. max_size=size,
  543. num_classes=3, # COCO 数据集有 91 类
  544. rpn_anchor_generator=anchor_generator,
  545. box_roi_pool=roi_pooler,
  546. detect_line=False,
  547. detect_point=False,
  548. )
  549. return model
  550. def linedetect_resnet18_fpn(
  551. *,
  552. num_classes: Optional[int] = None,
  553. num_points: Optional[int] = None,
  554. **kwargs: Any,
  555. ) -> LineDetect:
  556. if num_classes is None:
  557. num_classes = 4
  558. if num_points is None:
  559. num_points = 3
  560. size=1024
  561. backbone = resnet_fpn_backbone(backbone_name='resnet18',weights=None)
  562. model = LineDetect(backbone,min_size=size,max_size=size , num_classes=num_classes, num_points=num_points, **kwargs)
  563. return model
  564. def linedetect_resnet50_fpn(
  565. *,
  566. num_classes: Optional[int] = None,
  567. num_points: Optional[int] = None,
  568. **kwargs: Any,
  569. ) -> LineDetect:
  570. if num_classes is None:
  571. num_classes = 3
  572. if num_points is None:
  573. num_points = 3
  574. backbone = resnet_fpn_backbone(backbone_name='resnet18', weights=None)
  575. model = LineDetect(backbone, num_classes, num_points=num_points, **kwargs)
  576. return model