line_detect.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645
  1. import os
  2. from typing import Any, Callable, List, Optional, Tuple, Union
  3. import torch
  4. from torch import nn
  5. from libs.vision_libs import ops
  6. from libs.vision_libs.models import MobileNet_V3_Large_Weights, mobilenet_v3_large, EfficientNet_V2_S_Weights, \
  7. efficientnet_v2_s, detection, EfficientNet_V2_L_Weights, efficientnet_v2_l, EfficientNet_V2_M_Weights, \
  8. efficientnet_v2_m
  9. from libs.vision_libs.models.detection.anchor_utils import AnchorGenerator
  10. from libs.vision_libs.models.detection.rpn import RPNHead, RegionProposalNetwork
  11. from libs.vision_libs.models.detection.ssdlite import _mobilenet_extractor
  12. from libs.vision_libs.models.detection.transform import GeneralizedRCNNTransform
  13. from libs.vision_libs.ops import misc as misc_nn_ops, MultiScaleRoIAlign
  14. from libs.vision_libs.transforms._presets import ObjectDetection
  15. from libs.vision_libs.models._api import register_model, Weights, WeightsEnum
  16. from libs.vision_libs.models._meta import _COCO_PERSON_CATEGORIES, _COCO_PERSON_KEYPOINT_NAMES, _COCO_CATEGORIES
  17. from libs.vision_libs.models._utils import _ovewrite_value_param, handle_legacy_interface
  18. from libs.vision_libs.models.resnet import resnet50, ResNet50_Weights, ResNet18_Weights, resnet18
  19. from libs.vision_libs.models.detection._utils import overwrite_eps
  20. from libs.vision_libs.models.detection.backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers, \
  21. BackboneWithFPN, resnet_fpn_backbone
  22. from libs.vision_libs.models.detection.faster_rcnn import FasterRCNN, TwoMLPHead, FastRCNNPredictor
  23. from .heads.arc_heads import ArcHeads, ArcPredictor
  24. from .heads.arc_unet import ArcUnet
  25. from .heads.line_heads import LinePredictor
  26. from .heads.point_heads import PointHeads, PointPredictor
  27. from .loi_heads import RoIHeads
  28. from .trainer import Trainer
  29. from ..base import backbone_factory
  30. from ..base.backbone_factory import get_convnext_fpn, get_anchor_generator, get_maxvit_fpn, MaxVitBackbone, \
  31. get_swin_transformer_fpn
  32. # from ..base.backbone_factory import get_convnext_fpn, get_anchor_generator
  33. from ..base.base_detection_net import BaseDetectionNet
  34. import torch.nn.functional as F
  35. from ..base.high_reso_maxvit import maxvit_with_fpn
  36. from ..base.high_reso_resnet import resnet50fpn, resnet18fpn, resnet101fpn, Bottleneck
  37. __all__ = [
  38. "LineDetect",
  39. "linedetect_resnet50_fpn",
  40. ]
  41. from ..line_net.line_detect import LineHeads
  42. def _default_anchorgen():
  43. anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
  44. aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
  45. return AnchorGenerator(anchor_sizes, aspect_ratios)
  46. class LineDetect(BaseDetectionNet):
  47. def __init__(
  48. self,
  49. backbone,
  50. num_classes=3,
  51. # transform parameters
  52. min_size=512,
  53. max_size=512,
  54. image_mean=None,
  55. image_std=None,
  56. # RPN parameters
  57. rpn_anchor_generator=None,
  58. rpn_head=None,
  59. rpn_pre_nms_top_n_train=2000,
  60. rpn_pre_nms_top_n_test=1000,
  61. rpn_post_nms_top_n_train=2000,
  62. rpn_post_nms_top_n_test=1000,
  63. rpn_nms_thresh=0.7,
  64. rpn_fg_iou_thresh=0.7,
  65. rpn_bg_iou_thresh=0.3,
  66. rpn_batch_size_per_image=256,
  67. rpn_positive_fraction=0.5,
  68. rpn_score_thresh=0.0,
  69. # Box parameters
  70. box_roi_pool=None,
  71. box_head=None,
  72. box_predictor=None,
  73. box_score_thresh=0.05,
  74. box_nms_thresh=0.5,
  75. box_detections_per_img=200,
  76. box_fg_iou_thresh=0.5,
  77. box_bg_iou_thresh=0.5,
  78. box_batch_size_per_image=512,
  79. box_positive_fraction=0.25,
  80. bbox_reg_weights=None,
  81. # line parameters
  82. line_roi_pool=None,
  83. line_head=None,
  84. line_predictor=None,
  85. # point parameters
  86. point_roi_pool=None,
  87. point_head=None,
  88. point_predictor=None,
  89. # arc parameters
  90. arc_roi_pool=None,
  91. arc_head=None,
  92. arc_predictor=None,
  93. num_points=3,
  94. detect_point=False,
  95. detect_line=False,
  96. detect_arc=True,
  97. **kwargs,
  98. ):
  99. out_channels = backbone.out_channels
  100. if rpn_anchor_generator is None:
  101. rpn_anchor_generator = _default_anchorgen()
  102. if rpn_head is None:
  103. rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
  104. rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
  105. rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)
  106. rpn = RegionProposalNetwork(
  107. rpn_anchor_generator,
  108. rpn_head,
  109. rpn_fg_iou_thresh,
  110. rpn_bg_iou_thresh,
  111. rpn_batch_size_per_image,
  112. rpn_positive_fraction,
  113. rpn_pre_nms_top_n,
  114. rpn_post_nms_top_n,
  115. rpn_nms_thresh,
  116. score_thresh=rpn_score_thresh,
  117. )
  118. if box_roi_pool is None:
  119. box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2)
  120. if box_head is None:
  121. resolution = box_roi_pool.output_size[0]
  122. representation_size = 1024
  123. box_head = TwoMLPHead(out_channels * resolution**2, representation_size)
  124. if box_predictor is None:
  125. representation_size = 1024
  126. box_predictor = ObjectionPredictor(representation_size, num_classes)
  127. roi_heads = RoIHeads(
  128. # Box
  129. box_roi_pool,
  130. box_head,
  131. box_predictor,
  132. box_fg_iou_thresh,
  133. box_bg_iou_thresh,
  134. box_batch_size_per_image,
  135. box_positive_fraction,
  136. bbox_reg_weights,
  137. box_score_thresh,
  138. box_nms_thresh,
  139. box_detections_per_img,
  140. detect_point=detect_point,
  141. detect_line=detect_line,
  142. detect_arc=detect_arc,
  143. )
  144. if image_mean is None:
  145. image_mean = [0.485, 0.456, 0.406]
  146. if image_std is None:
  147. image_std = [0.229, 0.224, 0.225]
  148. transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std, **kwargs)
  149. super().__init__(backbone, rpn, roi_heads, transform)
  150. if line_head is None and detect_line:
  151. layers = tuple(num_points for _ in range(8))
  152. line_head = LineHeads(8, layers)
  153. if line_predictor is None and detect_line:
  154. # keypoint_dim_reduced = 512 # == keypoint_layers[-1]
  155. # line_predictor = LinePredictor(in_channels=256)
  156. line_predictor = ArcUnet(Bottleneck)
  157. if point_head is None and detect_point:
  158. layers = tuple(num_points for _ in range(8))
  159. point_head = PointHeads(8, layers)
  160. if point_predictor is None and detect_point:
  161. # keypoint_dim_reduced = 512 # == keypoint_layers[-1]
  162. point_predictor = PointPredictor(in_channels=256)
  163. if detect_arc and arc_head is None:
  164. layers = tuple(num_points for _ in range(8))
  165. arc_head=ArcHeads(8,layers)
  166. if detect_arc and arc_predictor is None:
  167. layers = tuple(num_points for _ in range(8))
  168. # arc_predictor=ArcPredictor(in_channels=256,out_channels=1)
  169. arc_predictor=ArcUnet(Bottleneck)
  170. self.roi_heads.line_roi_pool = line_roi_pool
  171. self.roi_heads.line_head = line_head
  172. self.roi_heads.line_predictor = line_predictor
  173. self.roi_heads.point_roi_pool = point_roi_pool
  174. self.roi_heads.point_head = point_head
  175. self.roi_heads.point_predictor = point_predictor
  176. self.roi_heads.arc_roi_pool = arc_roi_pool
  177. self.roi_heads.arc_head = arc_head
  178. self.roi_heads.arc_predictor = arc_predictor
  179. def start_train(self, cfg):
  180. # cfg = read_yaml(cfg)
  181. self.trainer = Trainer()
  182. self.trainer.train_from_cfg(model=self, cfg=cfg)
  183. def load_weights(self, save_path, device='cuda'):
  184. if os.path.exists(save_path):
  185. checkpoint = torch.load(save_path, map_location=device)
  186. self.load_state_dict(checkpoint['model_state_dict'])
  187. # if optimizer is not None:
  188. # optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
  189. # epoch = checkpoint['epoch']
  190. # loss = checkpoint['loss']
  191. # print(f"Loaded best model from {save_path} at epoch {epoch} with loss {loss:.4f}")
  192. print(f"Loaded model from {save_path}")
  193. else:
  194. print(f"No saved model found at {save_path}")
  195. return self
  196. class TwoMLPHead(nn.Module):
  197. """
  198. Standard heads for FPN-based models
  199. Args:
  200. in_channels (int): number of input channels
  201. representation_size (int): size of the intermediate representation
  202. """
  203. def __init__(self, in_channels, representation_size):
  204. super().__init__()
  205. self.fc6 = nn.Linear(in_channels, representation_size)
  206. self.fc7 = nn.Linear(representation_size, representation_size)
  207. def forward(self, x):
  208. x = x.flatten(start_dim=1)
  209. x = F.relu(self.fc6(x))
  210. x = F.relu(self.fc7(x))
  211. return x
  212. class ObjectionConvFCHead(nn.Sequential):
  213. def __init__(
  214. self,
  215. input_size: Tuple[int, int, int],
  216. conv_layers: List[int],
  217. fc_layers: List[int],
  218. norm_layer: Optional[Callable[..., nn.Module]] = None,
  219. ):
  220. """
  221. Args:
  222. input_size (Tuple[int, int, int]): the input size in CHW format.
  223. conv_layers (list): feature dimensions of each Convolution layer
  224. fc_layers (list): feature dimensions of each FCN layer
  225. norm_layer (callable, optional): Module specifying the normalization layer to use. Default: None
  226. """
  227. in_channels, in_height, in_width = input_size
  228. blocks = []
  229. previous_channels = in_channels
  230. for current_channels in conv_layers:
  231. blocks.append(misc_nn_ops.Conv2dNormActivation(previous_channels, current_channels, norm_layer=norm_layer))
  232. previous_channels = current_channels
  233. blocks.append(nn.Flatten())
  234. previous_channels = previous_channels * in_height * in_width
  235. for current_channels in fc_layers:
  236. blocks.append(nn.Linear(previous_channels, current_channels))
  237. blocks.append(nn.ReLU(inplace=True))
  238. previous_channels = current_channels
  239. super().__init__(*blocks)
  240. for layer in self.modules():
  241. if isinstance(layer, nn.Conv2d):
  242. nn.init.kaiming_normal_(layer.weight, mode="fan_out", nonlinearity="relu")
  243. if layer.bias is not None:
  244. nn.init.zeros_(layer.bias)
  245. class ObjectionPredictor(nn.Module):
  246. """
  247. Standard classification + bounding box regression layers
  248. for Fast R-CNN.
  249. Args:
  250. in_channels (int): number of input channels
  251. num_classes (int): number of output classes (including background)
  252. """
  253. def __init__(self, in_channels, num_classes):
  254. super().__init__()
  255. self.cls_score = nn.Linear(in_channels, num_classes)
  256. self.bbox_pred = nn.Linear(in_channels, num_classes * 4)
  257. def forward(self, x):
  258. if x.dim() == 4:
  259. torch._assert(
  260. list(x.shape[2:]) == [1, 1],
  261. f"x has the wrong shape, expecting the last two dimensions to be [1,1] instead of {list(x.shape[2:])}",
  262. )
  263. x = x.flatten(start_dim=1)
  264. scores = self.cls_score(x)
  265. bbox_deltas = self.bbox_pred(x)
  266. return scores, bbox_deltas
  267. def linedetect_newresnet18fpn(
  268. *,
  269. num_classes: Optional[int] = None,
  270. num_points:Optional[int] = None,
  271. **kwargs: Any,
  272. ) -> LineDetect:
  273. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  274. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  275. if num_classes is None:
  276. num_classes = 4
  277. if num_points is None:
  278. num_points = 3
  279. size=512
  280. backbone =resnet18fpn()
  281. featmap_names=['0', '1', '2', '3','4','pool']
  282. # print(f'featmap_names:{featmap_names}')
  283. roi_pooler = MultiScaleRoIAlign(
  284. featmap_names=featmap_names,
  285. output_size=7,
  286. sampling_ratio=2
  287. )
  288. num_features=len(featmap_names)
  289. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  290. # print(f'anchor_sizes:{anchor_sizes}')
  291. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  292. # print(f'aspect_ratios:{aspect_ratios}')
  293. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  294. model = LineDetect(backbone,
  295. num_classes,min_size=size,max_size=size, num_points=num_points,
  296. rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler,
  297. detect_point=False,
  298. detect_line=False,
  299. detect_arc=True,
  300. **kwargs)
  301. return model
  302. def linedetect_newresnet50fpn(
  303. *,
  304. num_classes: Optional[int] = None,
  305. num_points:Optional[int] = None,
  306. **kwargs: Any,
  307. ) -> LineDetect:
  308. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  309. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  310. if num_classes is None:
  311. num_classes = 4
  312. if num_points is None:
  313. num_points = 3
  314. size=768
  315. backbone =resnet50fpn(out_channels=256)
  316. featmap_names=['0', '1', '2', '3','4','pool']
  317. # print(f'featmap_names:{featmap_names}')
  318. roi_pooler = MultiScaleRoIAlign(
  319. featmap_names=featmap_names,
  320. output_size=7,
  321. sampling_ratio=2
  322. )
  323. num_features=len(featmap_names)
  324. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  325. # print(f'anchor_sizes:{anchor_sizes}')
  326. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  327. # print(f'aspect_ratios:{aspect_ratios}')
  328. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  329. model = LineDetect(backbone, num_classes,min_size=size,max_size=size, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler,
  330. detect_point=True,
  331. detect_line=False,
  332. detect_arc=False,
  333. **kwargs)
  334. return model
  335. def linedetect_newresnet101fpn(
  336. *,
  337. num_classes: Optional[int] = None,
  338. num_points:Optional[int] = None,
  339. **kwargs: Any,
  340. ) -> LineDetect:
  341. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  342. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  343. if num_classes is None:
  344. num_classes = 3
  345. if num_points is None:
  346. num_points = 3
  347. size=768
  348. backbone =resnet101fpn(out_channels=256)
  349. featmap_names=['0', '1', '2', '3','4','pool']
  350. # print(f'featmap_names:{featmap_names}')
  351. roi_pooler = MultiScaleRoIAlign(
  352. featmap_names=featmap_names,
  353. output_size=7,
  354. sampling_ratio=2
  355. )
  356. num_features=len(featmap_names)
  357. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  358. # print(f'anchor_sizes:{anchor_sizes}')
  359. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  360. # print(f'aspect_ratios:{aspect_ratios}')
  361. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  362. model = LineDetect(backbone, num_classes,min_size=size,max_size=size, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
  363. return model
  364. def linedetect_newresnet152fpn(
  365. *,
  366. num_classes: Optional[int] = None,
  367. num_points:Optional[int] = None,
  368. **kwargs: Any,
  369. ) -> LineDetect:
  370. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  371. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  372. if num_classes is None:
  373. num_classes = 4
  374. if num_points is None:
  375. num_points = 3
  376. size=800
  377. backbone =resnet101fpn(out_channels=256)
  378. featmap_names=['0', '1', '2', '3','4','pool']
  379. # print(f'featmap_names:{featmap_names}')
  380. roi_pooler = MultiScaleRoIAlign(
  381. featmap_names=featmap_names,
  382. output_size=7,
  383. sampling_ratio=2
  384. )
  385. num_features=len(featmap_names)
  386. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  387. # print(f'anchor_sizes:{anchor_sizes}')
  388. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  389. # print(f'aspect_ratios:{aspect_ratios}')
  390. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  391. model = LineDetect(backbone, num_classes,
  392. min_size=size,max_size=size,
  393. num_points=num_points, rpn_anchor_generator=anchor_generator,
  394. box_roi_pool=roi_pooler,
  395. detect_point=False,
  396. detect_line=True,
  397. detect_arc=False,
  398. **kwargs)
  399. return model
  400. def linedetect_maxvitfpn(
  401. *,
  402. num_classes: Optional[int] = None,
  403. num_points:Optional[int] = None,
  404. **kwargs: Any,
  405. ) -> LineDetect:
  406. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  407. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  408. if num_classes is None:
  409. num_classes = 4
  410. if num_points is None:
  411. num_points = 3
  412. size=224*3
  413. maxvit = MaxVitBackbone(input_size=(size,size))
  414. # print(maxvit.named_children())
  415. # for i,layer in enumerate(maxvit.named_children()):
  416. # print(f'layer:{i}:{layer}')
  417. in_channels_list = [64, 64, 128, 256, 512]
  418. featmap_names = ['0', '1', '2', '3', '4', 'pool']
  419. roi_pooler = MultiScaleRoIAlign(
  420. featmap_names=featmap_names,
  421. output_size=7,
  422. sampling_ratio=2
  423. )
  424. backbone_with_fpn = BackboneWithFPN(
  425. maxvit,
  426. return_layers={'stem': '0', 'block0': '1', 'block1': '2', 'block2': '3', 'block3': '4'},
  427. # 确保这些键对应到实际的层
  428. in_channels_list=in_channels_list,
  429. out_channels=128
  430. )
  431. test_input = torch.randn(1, 3,size,size)
  432. model = LineDetect(
  433. backbone=backbone_with_fpn,
  434. min_size=size,
  435. max_size=size,
  436. num_classes=num_classes, # COCO 数据集有 91 类
  437. rpn_anchor_generator=get_anchor_generator(backbone_with_fpn, test_input=test_input),
  438. box_roi_pool=roi_pooler,
  439. detect_line=False,
  440. detect_point=False,
  441. detect_arc=True,
  442. )
  443. return model
  444. def linedetect_high_maxvitfpn(
  445. *,
  446. num_classes: Optional[int] = None,
  447. num_points:Optional[int] = None,
  448. **kwargs: Any,
  449. ) -> LineDetect:
  450. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  451. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  452. if num_classes is None:
  453. num_classes = 3
  454. if num_points is None:
  455. num_points = 3
  456. size=224*2
  457. maxvitfpn =maxvit_with_fpn(size=size)
  458. # print(maxvit.named_children())
  459. # for i,layer in enumerate(maxvit.named_children()):
  460. # print(f'layer:{i}:{layer}')
  461. in_channels_list = [64,64, 64, 128, 256, 512]
  462. featmap_names = ['0', '1', '2', '3', '4', '5','pool']
  463. roi_pooler = MultiScaleRoIAlign(
  464. featmap_names=featmap_names,
  465. output_size=7,
  466. sampling_ratio=2
  467. )
  468. test_input = torch.randn(1, 3,size,size)
  469. model = LineDetect(
  470. backbone=maxvitfpn,
  471. min_size=size,
  472. max_size=size,
  473. num_classes=3, # COCO 数据集有 91 类
  474. rpn_anchor_generator=get_anchor_generator(maxvitfpn, test_input=test_input),
  475. box_roi_pool=roi_pooler
  476. )
  477. return model
  478. def linedetect_swin_transformer_fpn(
  479. *,
  480. num_classes: Optional[int] = None,
  481. num_points:Optional[int] = None,
  482. type='t',
  483. **kwargs: Any,
  484. ) -> LineDetect:
  485. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  486. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  487. if num_classes is None:
  488. num_classes = 3
  489. if num_points is None:
  490. num_points = 3
  491. size=512
  492. backbone_with_fpn, roi_pooler, anchor_generator=get_swin_transformer_fpn(type=type)
  493. # test_input = torch.randn(1, 3,size,size)
  494. model = LineDetect(
  495. backbone=backbone_with_fpn,
  496. min_size=size,
  497. max_size=size,
  498. num_classes=3, # COCO 数据集有 91 类
  499. rpn_anchor_generator=anchor_generator,
  500. box_roi_pool=roi_pooler,
  501. detect_line=True,
  502. detect_point=False,
  503. )
  504. return model
  505. def linedetect_resnet18_fpn(
  506. *,
  507. num_classes: Optional[int] = None,
  508. num_points: Optional[int] = None,
  509. **kwargs: Any,
  510. ) -> LineDetect:
  511. if num_classes is None:
  512. num_classes = 4
  513. if num_points is None:
  514. num_points = 3
  515. size=1024
  516. backbone = resnet_fpn_backbone(backbone_name='resnet18',weights=None)
  517. model = LineDetect(backbone,min_size=size,max_size=size , num_classes=num_classes, num_points=num_points, **kwargs)
  518. return model
  519. def linedetect_resnet50_fpn(
  520. *,
  521. num_classes: Optional[int] = None,
  522. num_points: Optional[int] = None,
  523. **kwargs: Any,
  524. ) -> LineDetect:
  525. if num_classes is None:
  526. num_classes = 3
  527. if num_points is None:
  528. num_points = 3
  529. backbone = resnet_fpn_backbone(backbone_name='resnet18', weights=None)
  530. model = LineDetect(backbone, num_classes, num_points=num_points, **kwargs)
  531. return model