| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189 |
- from collections import OrderedDict
- from libs.vision_libs import models
- from libs.vision_libs.models import mobilenet_v3_large, EfficientNet_V2_S_Weights, efficientnet_v2_s, \
- EfficientNet_V2_M_Weights, efficientnet_v2_m, EfficientNet_V2_L_Weights, efficientnet_v2_l
- from libs.vision_libs.models._utils import _ovewrite_value_param, handle_legacy_interface
- from libs.vision_libs.models.detection import FasterRCNN
- from libs.vision_libs.models.detection.anchor_utils import AnchorGenerator
- from libs.vision_libs.models.detection.ssdlite import _mobilenet_extractor
- from libs.vision_libs.models.resnet import resnet50, ResNet50_Weights, resnet18
- from libs.vision_libs.models.detection._utils import overwrite_eps
- from libs.vision_libs.models.detection.backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers
- from libs.vision_libs.ops import misc as misc_nn_ops, MultiScaleRoIAlign
- from torch import nn
- import torch
- from torchvision.models.detection.backbone_utils import BackboneWithFPN, resnet_fpn_backbone
- from torchvision.ops.feature_pyramid_network import FeaturePyramidNetwork, LastLevelMaxPool
- def get_resnet50_fpn():
- is_trained = False
- trainable_backbone_layers = _validate_trainable_layers(is_trained, None, 5, 3)
- norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d
- backbone = resnet50(weights=None, progress=True, norm_layer=norm_layer)
- backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers)
- return backbone
- def get_resnet18_fpn():
- is_trained = False
- trainable_backbone_layers = _validate_trainable_layers(is_trained, None, 5, 3)
- norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d
- backbone = resnet18(weights=None, progress=True, norm_layer=norm_layer)
- backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers)
- return backbone
- def get_mobilenet_v3_large_fpn():
- is_trained = False
- trainable_backbone_layers = _validate_trainable_layers(is_trained, None, 6, 3)
- norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d
- backbone = mobilenet_v3_large(weights=None, progress=True, norm_layer=norm_layer)
- backbone = _mobilenet_extractor(backbone, True, trainable_backbone_layers)
- return backbone
- def get_convnext_fpn():
- convnext = models.convnext_base(pretrained=True)
- # convnext = models.convnext_small(pretrained=True)
- # convnext = models.convnext_large(pretrained=True)
- in_channels_list = [128, 256, 512, 1024]
- backbone_with_fpn = BackboneWithFPN(
- convnext.features,
- return_layers={'1': '0', '3': '1', '5': '2', '7': '3'}, # 确保这些键对应到实际的层
- in_channels_list=in_channels_list,
- out_channels=256
- )
- return backbone_with_fpn
- def get_efficientnetv2_fpn(name='efficientnet_v2_m', pretrained=True):
- # 加载EfficientNetV2模型
- if name == 'efficientnet_v2_s':
- weights = EfficientNet_V2_S_Weights.IMAGENET1K_V1 if pretrained else None
- backbone = efficientnet_v2_s(weights=weights).features
- if name == 'efficientnet_v2_m':
- weights = EfficientNet_V2_M_Weights.IMAGENET1K_V1 if pretrained else None
- backbone = efficientnet_v2_m(weights=weights).features
- if name == 'efficientnet_v2_l':
- weights = EfficientNet_V2_L_Weights.IMAGENET1K_V1 if pretrained else None
- backbone = efficientnet_v2_l(weights=weights).features
- # 定义返回的层索引和名称
- return_layers = {"2": "0", "3": "1", "4": "2", "5": "3"}
- # 获取每个层输出通道数
- in_channels_list = []
- for layer_idx in [2, 3, 4, 5]:
- module = backbone[layer_idx]
- if hasattr(module, 'out_channels'):
- in_channels_list.append(module.out_channels)
- elif hasattr(module[-1], 'out_channels'):
- # 如果module本身没有out_channels,检查最后一个子模块
- in_channels_list.append(module[-1].out_channels)
- else:
- raise ValueError(f"Cannot determine out_channels for layer {layer_idx}")
- # 使用BackboneWithFPN包装backbone
- backbone_with_fpn = BackboneWithFPN(
- backbone=backbone,
- return_layers=return_layers,
- in_channels_list=in_channels_list,
- out_channels=256
- )
- return backbone_with_fpn
- # 加载 ConvNeXt 模型
- convnext = models.convnext_base(pretrained=True)
- # convnext = models.convnext_tiny(pretrained=True)
- # convnext = models.convnext_small(pretrained=True)
- # print(convnext)
- # # 打印模型的所有命名层
- # for name, _ in convnext.features[5].named_children():
- # print(name)
- # 修改 ConvNeXt 以适应 Faster R-CNN
- # 修改 ConvNeXt 以适应 Faster R-CNN
- def get_anchor_generator(backbone, test_input):
- features = backbone(test_input) # 获取 backbone 输出的所有特征图
- featmap_names = list(features.keys())
- print(f'featmap_names:{featmap_names}')
- num_features = len(features) # 特征图数量
- print(f'num_features:{num_features}')
- # num_features=num_features-1
- # # 定义每层的 anchor 尺寸和比例
- # base_sizes = [32, 64, 128] # 支持最多 4 层
- # sizes = tuple((size,) for size in base_sizes[:num_features])
- anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
- print(f'anchor_sizes:{anchor_sizes }')
- aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
- print(f'aspect_ratios:{aspect_ratios}')
- return AnchorGenerator(sizes=anchor_sizes , aspect_ratios=aspect_ratios)
- if __name__ == '__main__':
- # 创建 ConvNeXt backbone
- convnext = models.convnext_base(pretrained=True)
- for i,layer in enumerate(convnext.features):
- print(f'layer{i}:{layer}')
- # 创建一个小的输入张量用于获取各层输出通道数
- dummy_input = torch.randn(1, 3, 224, 224)
- # output_channels_list = get_output_channels(convnext.features, dummy_input)
- # print(f'output_channels_list:{output_channels_list}')
- # 根据之前的经验,选择合适的层索引
- selected_layers = [3, 5, 7] # 假设这是我们要用作 FPN 输入的层索引
- in_channels_list = [128,256,512,1024]
- print(f'in_channels_list:{in_channels_list}')
- # 创建 FPN
- backbone_with_fpn = BackboneWithFPN(
- convnext.features,
- return_layers={'1':'0','3': '1', '5': '2', '7': '3'}, # 确保这些键对应到实际的层
- in_channels_list=in_channels_list,
- out_channels=256
- )
- # 创建 Faster R-CNN 模型
- # anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
- # aspect_ratios=((0.5, 1.0, 2.0),))
- # anchor_generator = AnchorGenerator(
- # sizes=((32,), (64,), (128,)), # ✅ 正确
- # aspect_ratios=((0.5, 1.0, 2.0),) * 3 # ✅ 正确
- # )
- test_input = torch.rand(1, 3, 224, 224)
- anchor_generator = get_anchor_generator(backbone_with_fpn, test_input)
- print(f'anchor_generator:{anchor_generator}')
- featmap_names=['0', '1', '2', '3', 'pool']
- roi_pooler = MultiScaleRoIAlign(
- featmap_names=featmap_names,
- output_size=7,
- sampling_ratio=2
- )
- model = FasterRCNN(
- backbone=backbone_with_fpn,
- num_classes=91, # COCO 数据集有 91 类
- rpn_anchor_generator=anchor_generator,
- box_roi_pool=roi_pooler
- )
- # 测试模型
- test_input = torch.randn(1, 3, 800, 800) # 注意输入尺寸应符合 Faster R-CNN 需求
- model.eval()
- output = model(test_input)
- print(f'output: {output}')
- # 测试模型
- dummy_input = torch.randn(1, 3, 800, 800) # 注意输入尺寸应符合 Faster R-CNN 需求
- model.eval()
- output = model(dummy_input)
- print(f'output:{output}')
|