line_detect.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637
  1. import os
  2. from typing import Any, Callable, List, Optional, Tuple, Union
  3. import torch
  4. from torch import nn
  5. from libs.vision_libs import ops
  6. from libs.vision_libs.models import MobileNet_V3_Large_Weights, mobilenet_v3_large, EfficientNet_V2_S_Weights, \
  7. efficientnet_v2_s, detection, EfficientNet_V2_L_Weights, efficientnet_v2_l, EfficientNet_V2_M_Weights, \
  8. efficientnet_v2_m
  9. from libs.vision_libs.models.detection.anchor_utils import AnchorGenerator
  10. from libs.vision_libs.models.detection.rpn import RPNHead, RegionProposalNetwork
  11. from libs.vision_libs.models.detection.ssdlite import _mobilenet_extractor
  12. from libs.vision_libs.models.detection.transform import GeneralizedRCNNTransform
  13. from libs.vision_libs.ops import misc as misc_nn_ops, MultiScaleRoIAlign
  14. from libs.vision_libs.transforms._presets import ObjectDetection
  15. from libs.vision_libs.models._api import register_model, Weights, WeightsEnum
  16. from libs.vision_libs.models._meta import _COCO_PERSON_CATEGORIES, _COCO_PERSON_KEYPOINT_NAMES, _COCO_CATEGORIES
  17. from libs.vision_libs.models._utils import _ovewrite_value_param, handle_legacy_interface
  18. from libs.vision_libs.models.resnet import resnet50, ResNet50_Weights, ResNet18_Weights, resnet18
  19. from libs.vision_libs.models.detection._utils import overwrite_eps
  20. from libs.vision_libs.models.detection.backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers, \
  21. BackboneWithFPN, resnet_fpn_backbone
  22. from libs.vision_libs.models.detection.faster_rcnn import FasterRCNN, TwoMLPHead, FastRCNNPredictor
  23. from .heads.arc_heads import ArcHeads, ArcPredictor
  24. from .heads.arc_unet import ArcUnet
  25. from .heads.line_heads import LinePredictor
  26. from .heads.point_heads import PointHeads, PointPredictor
  27. from .loi_heads import RoIHeads
  28. from .trainer import Trainer
  29. from ..base import backbone_factory
  30. from ..base.backbone_factory import get_convnext_fpn, get_anchor_generator, get_maxvit_fpn, MaxVitBackbone, \
  31. get_swin_transformer_fpn
  32. # from ..base.backbone_factory import get_convnext_fpn, get_anchor_generator
  33. from ..base.base_detection_net import BaseDetectionNet
  34. import torch.nn.functional as F
  35. from ..base.high_reso_maxvit import maxvit_with_fpn
  36. from ..base.high_reso_resnet import resnet50fpn, resnet18fpn, resnet101fpn, Bottleneck
  37. __all__ = [
  38. "LineDetect",
  39. "linedetect_resnet50_fpn",
  40. ]
  41. from ..line_net.line_detect import LineHeads
  42. def _default_anchorgen():
  43. anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
  44. aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
  45. return AnchorGenerator(anchor_sizes, aspect_ratios)
  46. class LineDetect(BaseDetectionNet):
  47. def __init__(
  48. self,
  49. backbone,
  50. num_classes=3,
  51. # transform parameters
  52. min_size=512,
  53. max_size=512,
  54. image_mean=None,
  55. image_std=None,
  56. # RPN parameters
  57. rpn_anchor_generator=None,
  58. rpn_head=None,
  59. rpn_pre_nms_top_n_train=2000,
  60. rpn_pre_nms_top_n_test=1000,
  61. rpn_post_nms_top_n_train=2000,
  62. rpn_post_nms_top_n_test=1000,
  63. rpn_nms_thresh=0.7,
  64. rpn_fg_iou_thresh=0.7,
  65. rpn_bg_iou_thresh=0.3,
  66. rpn_batch_size_per_image=256,
  67. rpn_positive_fraction=0.5,
  68. rpn_score_thresh=0.0,
  69. # Box parameters
  70. box_roi_pool=None,
  71. box_head=None,
  72. box_predictor=None,
  73. box_score_thresh=0.05,
  74. box_nms_thresh=0.5,
  75. box_detections_per_img=200,
  76. box_fg_iou_thresh=0.5,
  77. box_bg_iou_thresh=0.5,
  78. box_batch_size_per_image=512,
  79. box_positive_fraction=0.25,
  80. bbox_reg_weights=None,
  81. # line parameters
  82. line_roi_pool=None,
  83. line_head=None,
  84. line_predictor=None,
  85. # point parameters
  86. point_roi_pool=None,
  87. point_head=None,
  88. point_predictor=None,
  89. # arc parameters
  90. arc_roi_pool=None,
  91. arc_head=None,
  92. arc_predictor=None,
  93. num_points=3,
  94. detect_point=False,
  95. detect_line=False,
  96. detect_arc=True,
  97. **kwargs,
  98. ):
  99. out_channels = backbone.out_channels
  100. if rpn_anchor_generator is None:
  101. rpn_anchor_generator = _default_anchorgen()
  102. if rpn_head is None:
  103. rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
  104. rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
  105. rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)
  106. rpn = RegionProposalNetwork(
  107. rpn_anchor_generator,
  108. rpn_head,
  109. rpn_fg_iou_thresh,
  110. rpn_bg_iou_thresh,
  111. rpn_batch_size_per_image,
  112. rpn_positive_fraction,
  113. rpn_pre_nms_top_n,
  114. rpn_post_nms_top_n,
  115. rpn_nms_thresh,
  116. score_thresh=rpn_score_thresh,
  117. )
  118. if box_roi_pool is None:
  119. box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2)
  120. if box_head is None:
  121. resolution = box_roi_pool.output_size[0]
  122. representation_size = 1024
  123. box_head = TwoMLPHead(out_channels * resolution**2, representation_size)
  124. if box_predictor is None:
  125. representation_size = 1024
  126. box_predictor = ObjectionPredictor(representation_size, num_classes)
  127. roi_heads = RoIHeads(
  128. # Box
  129. box_roi_pool,
  130. box_head,
  131. box_predictor,
  132. box_fg_iou_thresh,
  133. box_bg_iou_thresh,
  134. box_batch_size_per_image,
  135. box_positive_fraction,
  136. bbox_reg_weights,
  137. box_score_thresh,
  138. box_nms_thresh,
  139. box_detections_per_img,
  140. detect_point=detect_point,
  141. detect_line=detect_line,
  142. detect_arc=detect_arc,
  143. )
  144. if image_mean is None:
  145. image_mean = [0.485, 0.456, 0.406]
  146. if image_std is None:
  147. image_std = [0.229, 0.224, 0.225]
  148. transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std, **kwargs)
  149. super().__init__(backbone, rpn, roi_heads, transform)
  150. if line_head is None and detect_line:
  151. layers = tuple(num_points for _ in range(8))
  152. line_head = LineHeads(8, layers)
  153. if line_predictor is None and detect_line:
  154. # keypoint_dim_reduced = 512 # == keypoint_layers[-1]
  155. line_predictor = LinePredictor(in_channels=256)
  156. if point_head is None and detect_point:
  157. layers = tuple(num_points for _ in range(8))
  158. point_head = PointHeads(8, layers)
  159. if point_predictor is None and detect_point:
  160. # keypoint_dim_reduced = 512 # == keypoint_layers[-1]
  161. point_predictor = PointPredictor(in_channels=256)
  162. if detect_arc and arc_head is None:
  163. layers = tuple(num_points for _ in range(8))
  164. arc_head=ArcHeads(8,layers)
  165. if detect_arc and arc_predictor is None:
  166. layers = tuple(num_points for _ in range(8))
  167. # arc_predictor=ArcPredictor(in_channels=256,out_channels=1)
  168. arc_predictor=ArcUnet(Bottleneck)
  169. self.roi_heads.line_roi_pool = line_roi_pool
  170. self.roi_heads.line_head = line_head
  171. self.roi_heads.line_predictor = line_predictor
  172. self.roi_heads.point_roi_pool = point_roi_pool
  173. self.roi_heads.point_head = point_head
  174. self.roi_heads.point_predictor = point_predictor
  175. self.roi_heads.arc_roi_pool = arc_roi_pool
  176. self.roi_heads.arc_head = arc_head
  177. self.roi_heads.arc_predictor = arc_predictor
  178. def start_train(self, cfg):
  179. # cfg = read_yaml(cfg)
  180. self.trainer = Trainer()
  181. self.trainer.train_from_cfg(model=self, cfg=cfg)
  182. def load_weights(self, save_path, device='cuda'):
  183. if os.path.exists(save_path):
  184. checkpoint = torch.load(save_path, map_location=device)
  185. self.load_state_dict(checkpoint['model_state_dict'])
  186. # if optimizer is not None:
  187. # optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
  188. # epoch = checkpoint['epoch']
  189. # loss = checkpoint['loss']
  190. # print(f"Loaded best model from {save_path} at epoch {epoch} with loss {loss:.4f}")
  191. print(f"Loaded model from {save_path}")
  192. else:
  193. print(f"No saved model found at {save_path}")
  194. return self
  195. class TwoMLPHead(nn.Module):
  196. """
  197. Standard heads for FPN-based models
  198. Args:
  199. in_channels (int): number of input channels
  200. representation_size (int): size of the intermediate representation
  201. """
  202. def __init__(self, in_channels, representation_size):
  203. super().__init__()
  204. self.fc6 = nn.Linear(in_channels, representation_size)
  205. self.fc7 = nn.Linear(representation_size, representation_size)
  206. def forward(self, x):
  207. x = x.flatten(start_dim=1)
  208. x = F.relu(self.fc6(x))
  209. x = F.relu(self.fc7(x))
  210. return x
  211. class ObjectionConvFCHead(nn.Sequential):
  212. def __init__(
  213. self,
  214. input_size: Tuple[int, int, int],
  215. conv_layers: List[int],
  216. fc_layers: List[int],
  217. norm_layer: Optional[Callable[..., nn.Module]] = None,
  218. ):
  219. """
  220. Args:
  221. input_size (Tuple[int, int, int]): the input size in CHW format.
  222. conv_layers (list): feature dimensions of each Convolution layer
  223. fc_layers (list): feature dimensions of each FCN layer
  224. norm_layer (callable, optional): Module specifying the normalization layer to use. Default: None
  225. """
  226. in_channels, in_height, in_width = input_size
  227. blocks = []
  228. previous_channels = in_channels
  229. for current_channels in conv_layers:
  230. blocks.append(misc_nn_ops.Conv2dNormActivation(previous_channels, current_channels, norm_layer=norm_layer))
  231. previous_channels = current_channels
  232. blocks.append(nn.Flatten())
  233. previous_channels = previous_channels * in_height * in_width
  234. for current_channels in fc_layers:
  235. blocks.append(nn.Linear(previous_channels, current_channels))
  236. blocks.append(nn.ReLU(inplace=True))
  237. previous_channels = current_channels
  238. super().__init__(*blocks)
  239. for layer in self.modules():
  240. if isinstance(layer, nn.Conv2d):
  241. nn.init.kaiming_normal_(layer.weight, mode="fan_out", nonlinearity="relu")
  242. if layer.bias is not None:
  243. nn.init.zeros_(layer.bias)
  244. class ObjectionPredictor(nn.Module):
  245. """
  246. Standard classification + bounding box regression layers
  247. for Fast R-CNN.
  248. Args:
  249. in_channels (int): number of input channels
  250. num_classes (int): number of output classes (including background)
  251. """
  252. def __init__(self, in_channels, num_classes):
  253. super().__init__()
  254. self.cls_score = nn.Linear(in_channels, num_classes)
  255. self.bbox_pred = nn.Linear(in_channels, num_classes * 4)
  256. def forward(self, x):
  257. if x.dim() == 4:
  258. torch._assert(
  259. list(x.shape[2:]) == [1, 1],
  260. f"x has the wrong shape, expecting the last two dimensions to be [1,1] instead of {list(x.shape[2:])}",
  261. )
  262. x = x.flatten(start_dim=1)
  263. scores = self.cls_score(x)
  264. bbox_deltas = self.bbox_pred(x)
  265. return scores, bbox_deltas
  266. def linedetect_newresnet18fpn(
  267. *,
  268. num_classes: Optional[int] = None,
  269. num_points:Optional[int] = None,
  270. **kwargs: Any,
  271. ) -> LineDetect:
  272. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  273. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  274. if num_classes is None:
  275. num_classes = 4
  276. if num_points is None:
  277. num_points = 3
  278. size=512
  279. backbone =resnet18fpn()
  280. featmap_names=['0', '1', '2', '3','4','pool']
  281. # print(f'featmap_names:{featmap_names}')
  282. roi_pooler = MultiScaleRoIAlign(
  283. featmap_names=featmap_names,
  284. output_size=7,
  285. sampling_ratio=2
  286. )
  287. num_features=len(featmap_names)
  288. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  289. # print(f'anchor_sizes:{anchor_sizes}')
  290. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  291. # print(f'aspect_ratios:{aspect_ratios}')
  292. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  293. model = LineDetect(backbone,
  294. num_classes,min_size=size,max_size=size, num_points=num_points,
  295. rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler,
  296. detect_point=False,
  297. detect_line=False,
  298. detect_arc=True,
  299. **kwargs)
  300. return model
  301. def linedetect_newresnet50fpn(
  302. *,
  303. num_classes: Optional[int] = None,
  304. num_points:Optional[int] = None,
  305. **kwargs: Any,
  306. ) -> LineDetect:
  307. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  308. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  309. if num_classes is None:
  310. num_classes = 4
  311. if num_points is None:
  312. num_points = 3
  313. size=768
  314. backbone =resnet50fpn(out_channels=256)
  315. featmap_names=['0', '1', '2', '3','4','pool']
  316. # print(f'featmap_names:{featmap_names}')
  317. roi_pooler = MultiScaleRoIAlign(
  318. featmap_names=featmap_names,
  319. output_size=7,
  320. sampling_ratio=2
  321. )
  322. num_features=len(featmap_names)
  323. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  324. # print(f'anchor_sizes:{anchor_sizes}')
  325. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  326. # print(f'aspect_ratios:{aspect_ratios}')
  327. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  328. model = LineDetect(backbone, num_classes,min_size=size,max_size=size, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler,
  329. detect_point=True,
  330. detect_line=False,
  331. detect_arc=False,
  332. **kwargs)
  333. return model
  334. def linedetect_newresnet101fpn(
  335. *,
  336. num_classes: Optional[int] = None,
  337. num_points:Optional[int] = None,
  338. **kwargs: Any,
  339. ) -> LineDetect:
  340. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  341. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  342. if num_classes is None:
  343. num_classes = 3
  344. if num_points is None:
  345. num_points = 3
  346. size=768
  347. backbone =resnet101fpn(out_channels=256)
  348. featmap_names=['0', '1', '2', '3','4','pool']
  349. # print(f'featmap_names:{featmap_names}')
  350. roi_pooler = MultiScaleRoIAlign(
  351. featmap_names=featmap_names,
  352. output_size=7,
  353. sampling_ratio=2
  354. )
  355. num_features=len(featmap_names)
  356. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  357. # print(f'anchor_sizes:{anchor_sizes}')
  358. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  359. # print(f'aspect_ratios:{aspect_ratios}')
  360. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  361. model = LineDetect(backbone, num_classes,min_size=size,max_size=size, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
  362. return model
  363. def linedetect_newresnet152fpn(
  364. *,
  365. num_classes: Optional[int] = None,
  366. num_points:Optional[int] = None,
  367. **kwargs: Any,
  368. ) -> LineDetect:
  369. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  370. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  371. if num_classes is None:
  372. num_classes = 4
  373. if num_points is None:
  374. num_points = 3
  375. size=800
  376. backbone =resnet101fpn(out_channels=256)
  377. featmap_names=['0', '1', '2', '3','4','pool']
  378. # print(f'featmap_names:{featmap_names}')
  379. roi_pooler = MultiScaleRoIAlign(
  380. featmap_names=featmap_names,
  381. output_size=7,
  382. sampling_ratio=2
  383. )
  384. num_features=len(featmap_names)
  385. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  386. # print(f'anchor_sizes:{anchor_sizes}')
  387. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  388. # print(f'aspect_ratios:{aspect_ratios}')
  389. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  390. model = LineDetect(backbone, num_classes,min_size=size,max_size=size, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
  391. return model
  392. def linedetect_maxvitfpn(
  393. *,
  394. num_classes: Optional[int] = None,
  395. num_points:Optional[int] = None,
  396. **kwargs: Any,
  397. ) -> LineDetect:
  398. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  399. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  400. if num_classes is None:
  401. num_classes = 4
  402. if num_points is None:
  403. num_points = 3
  404. size=224*3
  405. maxvit = MaxVitBackbone(input_size=(size,size))
  406. # print(maxvit.named_children())
  407. # for i,layer in enumerate(maxvit.named_children()):
  408. # print(f'layer:{i}:{layer}')
  409. in_channels_list = [64, 64, 128, 256, 512]
  410. featmap_names = ['0', '1', '2', '3', '4', 'pool']
  411. roi_pooler = MultiScaleRoIAlign(
  412. featmap_names=featmap_names,
  413. output_size=7,
  414. sampling_ratio=2
  415. )
  416. backbone_with_fpn = BackboneWithFPN(
  417. maxvit,
  418. return_layers={'stem': '0', 'block0': '1', 'block1': '2', 'block2': '3', 'block3': '4'},
  419. # 确保这些键对应到实际的层
  420. in_channels_list=in_channels_list,
  421. out_channels=128
  422. )
  423. test_input = torch.randn(1, 3,size,size)
  424. model = LineDetect(
  425. backbone=backbone_with_fpn,
  426. min_size=size,
  427. max_size=size,
  428. num_classes=num_classes, # COCO 数据集有 91 类
  429. rpn_anchor_generator=get_anchor_generator(backbone_with_fpn, test_input=test_input),
  430. box_roi_pool=roi_pooler,
  431. detect_line=False,
  432. detect_point=False,
  433. detect_arc=True,
  434. )
  435. return model
  436. def linedetect_high_maxvitfpn(
  437. *,
  438. num_classes: Optional[int] = None,
  439. num_points:Optional[int] = None,
  440. **kwargs: Any,
  441. ) -> LineDetect:
  442. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  443. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  444. if num_classes is None:
  445. num_classes = 3
  446. if num_points is None:
  447. num_points = 3
  448. size=224*2
  449. maxvitfpn =maxvit_with_fpn(size=size)
  450. # print(maxvit.named_children())
  451. # for i,layer in enumerate(maxvit.named_children()):
  452. # print(f'layer:{i}:{layer}')
  453. in_channels_list = [64,64, 64, 128, 256, 512]
  454. featmap_names = ['0', '1', '2', '3', '4', '5','pool']
  455. roi_pooler = MultiScaleRoIAlign(
  456. featmap_names=featmap_names,
  457. output_size=7,
  458. sampling_ratio=2
  459. )
  460. test_input = torch.randn(1, 3,size,size)
  461. model = LineDetect(
  462. backbone=maxvitfpn,
  463. min_size=size,
  464. max_size=size,
  465. num_classes=3, # COCO 数据集有 91 类
  466. rpn_anchor_generator=get_anchor_generator(maxvitfpn, test_input=test_input),
  467. box_roi_pool=roi_pooler
  468. )
  469. return model
  470. def linedetect_swin_transformer_fpn(
  471. *,
  472. num_classes: Optional[int] = None,
  473. num_points:Optional[int] = None,
  474. type='t',
  475. **kwargs: Any,
  476. ) -> LineDetect:
  477. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  478. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  479. if num_classes is None:
  480. num_classes = 3
  481. if num_points is None:
  482. num_points = 3
  483. size=512
  484. backbone_with_fpn, roi_pooler, anchor_generator=get_swin_transformer_fpn(type=type)
  485. # test_input = torch.randn(1, 3,size,size)
  486. model = LineDetect(
  487. backbone=backbone_with_fpn,
  488. min_size=size,
  489. max_size=size,
  490. num_classes=3, # COCO 数据集有 91 类
  491. rpn_anchor_generator=anchor_generator,
  492. box_roi_pool=roi_pooler,
  493. detect_line=True,
  494. detect_point=False,
  495. )
  496. return model
  497. def linedetect_resnet18_fpn(
  498. *,
  499. num_classes: Optional[int] = None,
  500. num_points: Optional[int] = None,
  501. **kwargs: Any,
  502. ) -> LineDetect:
  503. if num_classes is None:
  504. num_classes = 4
  505. if num_points is None:
  506. num_points = 3
  507. size=1024
  508. backbone = resnet_fpn_backbone(backbone_name='resnet18',weights=None)
  509. model = LineDetect(backbone,min_size=size,max_size=size , num_classes=num_classes, num_points=num_points, **kwargs)
  510. return model
  511. def linedetect_resnet50_fpn(
  512. *,
  513. num_classes: Optional[int] = None,
  514. num_points: Optional[int] = None,
  515. **kwargs: Any,
  516. ) -> LineDetect:
  517. if num_classes is None:
  518. num_classes = 3
  519. if num_points is None:
  520. num_points = 3
  521. backbone = resnet_fpn_backbone(backbone_name='resnet18', weights=None)
  522. model = LineDetect(backbone, num_classes, num_points=num_points, **kwargs)
  523. return model