line_detect.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510
  1. import os
  2. from typing import Any, Callable, List, Optional, Tuple, Union
  3. import torch
  4. from torch import nn
  5. from libs.vision_libs import ops
  6. from libs.vision_libs.models import MobileNet_V3_Large_Weights, mobilenet_v3_large, EfficientNet_V2_S_Weights, \
  7. efficientnet_v2_s, detection, EfficientNet_V2_L_Weights, efficientnet_v2_l, EfficientNet_V2_M_Weights, \
  8. efficientnet_v2_m
  9. from libs.vision_libs.models.detection.anchor_utils import AnchorGenerator
  10. from libs.vision_libs.models.detection.rpn import RPNHead, RegionProposalNetwork
  11. from libs.vision_libs.models.detection.ssdlite import _mobilenet_extractor
  12. from libs.vision_libs.models.detection.transform import GeneralizedRCNNTransform
  13. from libs.vision_libs.ops import misc as misc_nn_ops, MultiScaleRoIAlign
  14. from libs.vision_libs.transforms._presets import ObjectDetection
  15. from libs.vision_libs.models._api import register_model, Weights, WeightsEnum
  16. from libs.vision_libs.models._meta import _COCO_PERSON_CATEGORIES, _COCO_PERSON_KEYPOINT_NAMES, _COCO_CATEGORIES
  17. from libs.vision_libs.models._utils import _ovewrite_value_param, handle_legacy_interface
  18. from libs.vision_libs.models.resnet import resnet50, ResNet50_Weights, ResNet18_Weights, resnet18
  19. from libs.vision_libs.models.detection._utils import overwrite_eps
  20. from libs.vision_libs.models.detection.backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers, \
  21. BackboneWithFPN, resnet_fpn_backbone
  22. from libs.vision_libs.models.detection.faster_rcnn import FasterRCNN, TwoMLPHead, FastRCNNPredictor
  23. from .heads.line_heads import LinePredictor
  24. from .loi_heads import RoIHeads
  25. from .trainer import Trainer
  26. from ..base import backbone_factory
  27. from ..base.backbone_factory import get_convnext_fpn, get_anchor_generator, get_maxvit_fpn, MaxVitBackbone
  28. # from ..base.backbone_factory import get_convnext_fpn, get_anchor_generator
  29. from ..base.base_detection_net import BaseDetectionNet
  30. import torch.nn.functional as F
  31. from ..base.high_reso_maxvit import maxvit_with_fpn
  32. from ..base.high_reso_resnet import resnet50fpn, resnet18fpn, resnet101fpn
  33. __all__ = [
  34. "LineDetect",
  35. "linedetect_resnet50_fpn",
  36. ]
  37. from ..line_net.line_detect import LineHeads
  38. def _default_anchorgen():
  39. anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
  40. aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
  41. return AnchorGenerator(anchor_sizes, aspect_ratios)
  42. class LineDetect(BaseDetectionNet):
  43. def __init__(
  44. self,
  45. backbone,
  46. num_classes=3,
  47. # transform parameters
  48. min_size=512,
  49. max_size=512,
  50. image_mean=None,
  51. image_std=None,
  52. # RPN parameters
  53. rpn_anchor_generator=None,
  54. rpn_head=None,
  55. rpn_pre_nms_top_n_train=2000,
  56. rpn_pre_nms_top_n_test=1000,
  57. rpn_post_nms_top_n_train=2000,
  58. rpn_post_nms_top_n_test=1000,
  59. rpn_nms_thresh=0.7,
  60. rpn_fg_iou_thresh=0.7,
  61. rpn_bg_iou_thresh=0.3,
  62. rpn_batch_size_per_image=256,
  63. rpn_positive_fraction=0.5,
  64. rpn_score_thresh=0.0,
  65. # Box parameters
  66. box_roi_pool=None,
  67. box_head=None,
  68. box_predictor=None,
  69. box_score_thresh=0.05,
  70. box_nms_thresh=0.5,
  71. box_detections_per_img=200,
  72. box_fg_iou_thresh=0.5,
  73. box_bg_iou_thresh=0.5,
  74. box_batch_size_per_image=512,
  75. box_positive_fraction=0.25,
  76. bbox_reg_weights=None,
  77. # keypoint parameters
  78. line_roi_pool=None,
  79. line_head=None,
  80. line_predictor=None,
  81. num_points=3,
  82. **kwargs,
  83. ):
  84. out_channels = backbone.out_channels
  85. if rpn_anchor_generator is None:
  86. rpn_anchor_generator = _default_anchorgen()
  87. if rpn_head is None:
  88. rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
  89. rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
  90. rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)
  91. rpn = RegionProposalNetwork(
  92. rpn_anchor_generator,
  93. rpn_head,
  94. rpn_fg_iou_thresh,
  95. rpn_bg_iou_thresh,
  96. rpn_batch_size_per_image,
  97. rpn_positive_fraction,
  98. rpn_pre_nms_top_n,
  99. rpn_post_nms_top_n,
  100. rpn_nms_thresh,
  101. score_thresh=rpn_score_thresh,
  102. )
  103. if box_roi_pool is None:
  104. box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2)
  105. if box_head is None:
  106. resolution = box_roi_pool.output_size[0]
  107. representation_size = 1024
  108. box_head = TwoMLPHead(out_channels * resolution**2, representation_size)
  109. if box_predictor is None:
  110. representation_size = 1024
  111. box_predictor = ObjectionPredictor(representation_size, num_classes)
  112. roi_heads = RoIHeads(
  113. # Box
  114. box_roi_pool,
  115. box_head,
  116. box_predictor,
  117. box_fg_iou_thresh,
  118. box_bg_iou_thresh,
  119. box_batch_size_per_image,
  120. box_positive_fraction,
  121. bbox_reg_weights,
  122. box_score_thresh,
  123. box_nms_thresh,
  124. box_detections_per_img,
  125. )
  126. if image_mean is None:
  127. image_mean = [0.485, 0.456, 0.406]
  128. if image_std is None:
  129. image_std = [0.229, 0.224, 0.225]
  130. transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std, **kwargs)
  131. super().__init__(backbone, rpn, roi_heads, transform)
  132. if line_head is None:
  133. keypoint_layers = tuple(num_points for _ in range(8))
  134. line_head = LineHeads(8, keypoint_layers)
  135. if line_predictor is None:
  136. # keypoint_dim_reduced = 512 # == keypoint_layers[-1]
  137. line_predictor = LinePredictor(in_channels=128)
  138. self.roi_heads.line_roi_pool = line_roi_pool
  139. self.roi_heads.line_head = line_head
  140. self.roi_heads.line_predictor = line_predictor
  141. def start_train(self, cfg):
  142. # cfg = read_yaml(cfg)
  143. self.trainer = Trainer()
  144. self.trainer.train_from_cfg(model=self, cfg=cfg)
  145. def load_weights(self, save_path, device='cuda'):
  146. if os.path.exists(save_path):
  147. checkpoint = torch.load(save_path, map_location=device)
  148. self.load_state_dict(checkpoint['model_state_dict'])
  149. # if optimizer is not None:
  150. # optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
  151. # epoch = checkpoint['epoch']
  152. # loss = checkpoint['loss']
  153. # print(f"Loaded best model from {save_path} at epoch {epoch} with loss {loss:.4f}")
  154. print(f"Loaded model from {save_path}")
  155. else:
  156. print(f"No saved model found at {save_path}")
  157. return self
  158. class TwoMLPHead(nn.Module):
  159. """
  160. Standard heads for FPN-based models
  161. Args:
  162. in_channels (int): number of input channels
  163. representation_size (int): size of the intermediate representation
  164. """
  165. def __init__(self, in_channels, representation_size):
  166. super().__init__()
  167. self.fc6 = nn.Linear(in_channels, representation_size)
  168. self.fc7 = nn.Linear(representation_size, representation_size)
  169. def forward(self, x):
  170. x = x.flatten(start_dim=1)
  171. x = F.relu(self.fc6(x))
  172. x = F.relu(self.fc7(x))
  173. return x
  174. class ObjectionConvFCHead(nn.Sequential):
  175. def __init__(
  176. self,
  177. input_size: Tuple[int, int, int],
  178. conv_layers: List[int],
  179. fc_layers: List[int],
  180. norm_layer: Optional[Callable[..., nn.Module]] = None,
  181. ):
  182. """
  183. Args:
  184. input_size (Tuple[int, int, int]): the input size in CHW format.
  185. conv_layers (list): feature dimensions of each Convolution layer
  186. fc_layers (list): feature dimensions of each FCN layer
  187. norm_layer (callable, optional): Module specifying the normalization layer to use. Default: None
  188. """
  189. in_channels, in_height, in_width = input_size
  190. blocks = []
  191. previous_channels = in_channels
  192. for current_channels in conv_layers:
  193. blocks.append(misc_nn_ops.Conv2dNormActivation(previous_channels, current_channels, norm_layer=norm_layer))
  194. previous_channels = current_channels
  195. blocks.append(nn.Flatten())
  196. previous_channels = previous_channels * in_height * in_width
  197. for current_channels in fc_layers:
  198. blocks.append(nn.Linear(previous_channels, current_channels))
  199. blocks.append(nn.ReLU(inplace=True))
  200. previous_channels = current_channels
  201. super().__init__(*blocks)
  202. for layer in self.modules():
  203. if isinstance(layer, nn.Conv2d):
  204. nn.init.kaiming_normal_(layer.weight, mode="fan_out", nonlinearity="relu")
  205. if layer.bias is not None:
  206. nn.init.zeros_(layer.bias)
  207. class ObjectionPredictor(nn.Module):
  208. """
  209. Standard classification + bounding box regression layers
  210. for Fast R-CNN.
  211. Args:
  212. in_channels (int): number of input channels
  213. num_classes (int): number of output classes (including background)
  214. """
  215. def __init__(self, in_channels, num_classes):
  216. super().__init__()
  217. self.cls_score = nn.Linear(in_channels, num_classes)
  218. self.bbox_pred = nn.Linear(in_channels, num_classes * 4)
  219. def forward(self, x):
  220. if x.dim() == 4:
  221. torch._assert(
  222. list(x.shape[2:]) == [1, 1],
  223. f"x has the wrong shape, expecting the last two dimensions to be [1,1] instead of {list(x.shape[2:])}",
  224. )
  225. x = x.flatten(start_dim=1)
  226. scores = self.cls_score(x)
  227. bbox_deltas = self.bbox_pred(x)
  228. return scores, bbox_deltas
  229. def linedetect_newresnet18fpn(
  230. *,
  231. num_classes: Optional[int] = None,
  232. num_points:Optional[int] = None,
  233. **kwargs: Any,
  234. ) -> LineDetect:
  235. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  236. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  237. if num_classes is None:
  238. num_classes = 3
  239. if num_points is None:
  240. num_points = 3
  241. backbone =resnet18fpn()
  242. featmap_names=['0', '1', '2', '3','4','pool']
  243. # print(f'featmap_names:{featmap_names}')
  244. roi_pooler = MultiScaleRoIAlign(
  245. featmap_names=featmap_names,
  246. output_size=7,
  247. sampling_ratio=2
  248. )
  249. num_features=len(featmap_names)
  250. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  251. # print(f'anchor_sizes:{anchor_sizes}')
  252. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  253. # print(f'aspect_ratios:{aspect_ratios}')
  254. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  255. model = LineDetect(backbone, num_classes, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
  256. return model
  257. def linedetect_newresnet50fpn(
  258. *,
  259. num_classes: Optional[int] = None,
  260. num_points:Optional[int] = None,
  261. **kwargs: Any,
  262. ) -> LineDetect:
  263. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  264. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  265. if num_classes is None:
  266. num_classes = 3
  267. if num_points is None:
  268. num_points = 3
  269. backbone =resnet50fpn()
  270. featmap_names=['0', '1', '2', '3','4','pool']
  271. # print(f'featmap_names:{featmap_names}')
  272. roi_pooler = MultiScaleRoIAlign(
  273. featmap_names=featmap_names,
  274. output_size=7,
  275. sampling_ratio=2
  276. )
  277. num_features=len(featmap_names)
  278. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  279. # print(f'anchor_sizes:{anchor_sizes}')
  280. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  281. # print(f'aspect_ratios:{aspect_ratios}')
  282. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  283. model = LineDetect(backbone, num_classes, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
  284. return model
  285. def linedetect_newresnet101fpn(
  286. *,
  287. num_classes: Optional[int] = None,
  288. num_points:Optional[int] = None,
  289. **kwargs: Any,
  290. ) -> LineDetect:
  291. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  292. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  293. if num_classes is None:
  294. num_classes = 3
  295. if num_points is None:
  296. num_points = 3
  297. backbone =resnet101fpn()
  298. featmap_names=['0', '1', '2', '3','4','pool']
  299. # print(f'featmap_names:{featmap_names}')
  300. roi_pooler = MultiScaleRoIAlign(
  301. featmap_names=featmap_names,
  302. output_size=7,
  303. sampling_ratio=2
  304. )
  305. num_features=len(featmap_names)
  306. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  307. # print(f'anchor_sizes:{anchor_sizes}')
  308. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  309. # print(f'aspect_ratios:{aspect_ratios}')
  310. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  311. model = LineDetect(backbone, num_classes, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
  312. return model
  313. def linedetect_maxvitfpn(
  314. *,
  315. num_classes: Optional[int] = None,
  316. num_points:Optional[int] = None,
  317. **kwargs: Any,
  318. ) -> LineDetect:
  319. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  320. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  321. if num_classes is None:
  322. num_classes = 3
  323. if num_points is None:
  324. num_points = 3
  325. size=224*2
  326. maxvit = MaxVitBackbone(input_size=(size,size))
  327. # print(maxvit.named_children())
  328. # for i,layer in enumerate(maxvit.named_children()):
  329. # print(f'layer:{i}:{layer}')
  330. in_channels_list = [64, 64, 128, 256, 512]
  331. featmap_names = ['0', '1', '2', '3', '4', 'pool']
  332. roi_pooler = MultiScaleRoIAlign(
  333. featmap_names=featmap_names,
  334. output_size=7,
  335. sampling_ratio=2
  336. )
  337. backbone_with_fpn = BackboneWithFPN(
  338. maxvit,
  339. return_layers={'stem': '0', 'block0': '1', 'block1': '2', 'block2': '3', 'block3': '4'},
  340. # 确保这些键对应到实际的层
  341. in_channels_list=in_channels_list,
  342. out_channels=128
  343. )
  344. test_input = torch.randn(1, 3,size,size)
  345. model = LineDetect(
  346. backbone=backbone_with_fpn,
  347. min_size=size,
  348. max_size=size,
  349. num_classes=3, # COCO 数据集有 91 类
  350. rpn_anchor_generator=get_anchor_generator(backbone_with_fpn, test_input=test_input),
  351. box_roi_pool=roi_pooler
  352. )
  353. return model
  354. def linedetect_high_maxvitfpn(
  355. *,
  356. num_classes: Optional[int] = None,
  357. num_points:Optional[int] = None,
  358. **kwargs: Any,
  359. ) -> LineDetect:
  360. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  361. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  362. if num_classes is None:
  363. num_classes = 3
  364. if num_points is None:
  365. num_points = 3
  366. size=224*2
  367. maxvitfpn =maxvit_with_fpn(size=size)
  368. # print(maxvit.named_children())
  369. # for i,layer in enumerate(maxvit.named_children()):
  370. # print(f'layer:{i}:{layer}')
  371. in_channels_list = [64,64, 64, 128, 256, 512]
  372. featmap_names = ['0', '1', '2', '3', '4', '5','pool']
  373. roi_pooler = MultiScaleRoIAlign(
  374. featmap_names=featmap_names,
  375. output_size=7,
  376. sampling_ratio=2
  377. )
  378. test_input = torch.randn(1, 3,size,size)
  379. model = LineDetect(
  380. backbone=maxvitfpn,
  381. min_size=size,
  382. max_size=size,
  383. num_classes=3, # COCO 数据集有 91 类
  384. rpn_anchor_generator=get_anchor_generator(maxvitfpn, test_input=test_input),
  385. box_roi_pool=roi_pooler
  386. )
  387. return model
  388. def linedetect_resnet18_fpn(
  389. *,
  390. num_classes: Optional[int] = None,
  391. num_points: Optional[int] = None,
  392. **kwargs: Any,
  393. ) -> LineDetect:
  394. if num_classes is None:
  395. num_classes = 3
  396. if num_points is None:
  397. num_points = 3
  398. backbone = resnet_fpn_backbone(backbone_name='resnet18',weights=None)
  399. model = LineDetect(backbone, num_classes, num_points=num_points, **kwargs)
  400. return model
  401. def linedetect_resnet50_fpn(
  402. *,
  403. num_classes: Optional[int] = None,
  404. num_points: Optional[int] = None,
  405. **kwargs: Any,
  406. ) -> LineDetect:
  407. if num_classes is None:
  408. num_classes = 3
  409. if num_points is None:
  410. num_points = 3
  411. backbone = resnet_fpn_backbone(backbone_name='resnet18', weights=None)
  412. model = LineDetect(backbone, num_classes, num_points=num_points, **kwargs)
  413. return model