line_detect.py 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656
  1. import os
  2. from typing import Any, Callable, List, Optional, Tuple, Union
  3. import torch
  4. from torch import nn
  5. from libs.vision_libs import ops
  6. from libs.vision_libs.models import MobileNet_V3_Large_Weights, mobilenet_v3_large, EfficientNet_V2_S_Weights, \
  7. efficientnet_v2_s, detection, EfficientNet_V2_L_Weights, efficientnet_v2_l, EfficientNet_V2_M_Weights, \
  8. efficientnet_v2_m
  9. from libs.vision_libs.models.detection.anchor_utils import AnchorGenerator
  10. from libs.vision_libs.models.detection.rpn import RPNHead, RegionProposalNetwork
  11. from libs.vision_libs.models.detection.ssdlite import _mobilenet_extractor
  12. from libs.vision_libs.models.detection.transform import GeneralizedRCNNTransform
  13. from libs.vision_libs.ops import misc as misc_nn_ops, MultiScaleRoIAlign
  14. from libs.vision_libs.transforms._presets import ObjectDetection
  15. from libs.vision_libs.models._api import register_model, Weights, WeightsEnum
  16. from libs.vision_libs.models._meta import _COCO_PERSON_CATEGORIES, _COCO_PERSON_KEYPOINT_NAMES, _COCO_CATEGORIES
  17. from libs.vision_libs.models._utils import _ovewrite_value_param, handle_legacy_interface
  18. from libs.vision_libs.models.resnet import resnet50, ResNet50_Weights, ResNet18_Weights, resnet18
  19. from libs.vision_libs.models.detection._utils import overwrite_eps
  20. from libs.vision_libs.models.detection.backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers, \
  21. BackboneWithFPN, resnet_fpn_backbone
  22. from libs.vision_libs.models.detection.faster_rcnn import FasterRCNN, TwoMLPHead, FastRCNNPredictor
  23. from .heads.arc_heads import ArcHeads, ArcPredictor
  24. from .heads.circle_heads import CircleHeads, CirclePredictor
  25. from .heads.line_heads import LinePredictor
  26. from .heads.point_heads import PointHeads, PointPredictor
  27. from .loi_heads import RoIHeads
  28. from .trainer import Trainer
  29. from ..base import backbone_factory
  30. from ..base.backbone_factory import get_convnext_fpn, get_anchor_generator, get_maxvit_fpn, MaxVitBackbone, \
  31. get_swin_transformer_fpn
  32. # from ..base.backbone_factory import get_convnext_fpn, get_anchor_generator
  33. from ..base.base_detection_net import BaseDetectionNet
  34. import torch.nn.functional as F
  35. from ..base.high_reso_maxvit import maxvit_with_fpn
  36. from ..base.high_reso_resnet import resnet50fpn, resnet18fpn, resnet101fpn, Bottleneck
  37. __all__ = [
  38. "LineDetect",
  39. "linedetect_resnet50_fpn",
  40. ]
  41. from ..line_net.line_detect import LineHeads
  42. def _default_anchorgen():
  43. anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
  44. aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
  45. return AnchorGenerator(anchor_sizes, aspect_ratios)
  46. class LineDetect(BaseDetectionNet):
  47. def __init__(
  48. self,
  49. backbone,
  50. num_classes=3,
  51. # transform parameters
  52. min_size=512,
  53. max_size=512,
  54. image_mean=None,
  55. image_std=None,
  56. # RPN parameters
  57. rpn_anchor_generator=None,
  58. rpn_head=None,
  59. rpn_pre_nms_top_n_train=2000,
  60. rpn_pre_nms_top_n_test=1000,
  61. rpn_post_nms_top_n_train=2000,
  62. rpn_post_nms_top_n_test=1000,
  63. rpn_nms_thresh=0.7,
  64. rpn_fg_iou_thresh=0.7,
  65. rpn_bg_iou_thresh=0.3,
  66. rpn_batch_size_per_image=256,
  67. rpn_positive_fraction=0.5,
  68. rpn_score_thresh=0.0,
  69. # Box parameters
  70. box_roi_pool=None,
  71. box_head=None,
  72. box_predictor=None,
  73. box_score_thresh=0.05,
  74. box_nms_thresh=0.5,
  75. box_detections_per_img=200,
  76. box_fg_iou_thresh=0.5,
  77. box_bg_iou_thresh=0.5,
  78. box_batch_size_per_image=512,
  79. box_positive_fraction=0.25,
  80. bbox_reg_weights=None,
  81. # line parameters
  82. line_roi_pool=None,
  83. line_head=None,
  84. line_predictor=None,
  85. # point parameters
  86. point_roi_pool=None,
  87. point_head=None,
  88. point_predictor=None,
  89. circle_head=None,
  90. circle_predictor=None,
  91. circle_roi_pool=None,
  92. # arc parameters
  93. arc_roi_pool=None,
  94. arc_head=None,
  95. arc_predictor=None,
  96. num_points=4,
  97. detect_point=False,
  98. detect_line=False,
  99. detect_arc=True,
  100. detect_circle=False,
  101. **kwargs,
  102. ):
  103. out_channels = backbone.out_channels
  104. if rpn_anchor_generator is None:
  105. rpn_anchor_generator = _default_anchorgen()
  106. if rpn_head is None:
  107. rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
  108. rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
  109. rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)
  110. rpn = RegionProposalNetwork(
  111. rpn_anchor_generator,
  112. rpn_head,
  113. rpn_fg_iou_thresh,
  114. rpn_bg_iou_thresh,
  115. rpn_batch_size_per_image,
  116. rpn_positive_fraction,
  117. rpn_pre_nms_top_n,
  118. rpn_post_nms_top_n,
  119. rpn_nms_thresh,
  120. score_thresh=rpn_score_thresh,
  121. )
  122. if box_roi_pool is None:
  123. box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2)
  124. if box_head is None:
  125. resolution = box_roi_pool.output_size[0]
  126. representation_size = 1024
  127. box_head = TwoMLPHead(out_channels * resolution**2, representation_size)
  128. if box_predictor is None:
  129. representation_size = 1024
  130. box_predictor = ObjectionPredictor(representation_size, num_classes)
  131. roi_heads = RoIHeads(
  132. # Box
  133. box_roi_pool,
  134. box_head,
  135. box_predictor,
  136. box_fg_iou_thresh,
  137. box_bg_iou_thresh,
  138. box_batch_size_per_image,
  139. box_positive_fraction,
  140. bbox_reg_weights,
  141. box_score_thresh,
  142. box_nms_thresh,
  143. box_detections_per_img,
  144. detect_point=detect_point,
  145. detect_line=detect_line,
  146. detect_arc=detect_arc,
  147. detect_circle=detect_circle,
  148. )
  149. if image_mean is None:
  150. image_mean = [0.485, 0.456, 0.406]
  151. if image_std is None:
  152. image_std = [0.229, 0.224, 0.225]
  153. transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std, **kwargs)
  154. super().__init__(backbone, rpn, roi_heads, transform)
  155. if line_head is None and detect_line:
  156. layers = tuple(num_points for _ in range(8))
  157. line_head = LineHeads(8, layers)
  158. if line_predictor is None and detect_line:
  159. # keypoint_dim_reduced = 512 # == keypoint_layers[-1]
  160. line_predictor = LinePredictor(in_channels=256)
  161. if point_head is None and detect_point:
  162. layers = tuple(num_points for _ in range(8))
  163. point_head = PointHeads(8, layers)
  164. if point_predictor is None and detect_point:
  165. # keypoint_dim_reduced = 512 # == keypoint_layers[-1]
  166. point_predictor = PointPredictor(in_channels=256)
  167. if detect_arc and arc_head is None:
  168. layers = tuple(num_points for _ in range(8))
  169. arc_head=ArcHeads(8,layers)
  170. if detect_arc and arc_predictor is None:
  171. layers = tuple(num_points for _ in range(8))
  172. # arc_predictor=ArcPredictor(in_channels=256,out_channels=1)
  173. arc_predictor=ArcUnet(Bottleneck)
  174. if detect_circle and circle_head is None:
  175. layers = tuple(num_points for _ in range(8))
  176. circle_head = CircleHeads(8, layers)
  177. if detect_circle and circle_predictor is None:
  178. layers = tuple(num_points for _ in range(8))
  179. # arc_predictor=ArcPredictor(in_channels=256,out_channels=1)
  180. circle_predictor = CirclePredictor(in_channels=256)
  181. self.roi_heads.line_roi_pool = line_roi_pool
  182. self.roi_heads.line_head = line_head
  183. self.roi_heads.line_predictor = line_predictor
  184. self.roi_heads.point_roi_pool = point_roi_pool
  185. self.roi_heads.point_head = point_head
  186. self.roi_heads.point_predictor = point_predictor
  187. self.roi_heads.arc_roi_pool = arc_roi_pool
  188. self.roi_heads.arc_head = arc_head
  189. self.roi_heads.arc_predictor = arc_predictor
  190. self.roi_heads.circle_roi_pool = circle_roi_pool
  191. self.roi_heads.circle_head = circle_head
  192. self.roi_heads.circle_predictor = circle_predictor
  193. def start_train(self, cfg):
  194. # cfg = read_yaml(cfg)
  195. self.trainer = Trainer()
  196. self.trainer.train_from_cfg(model=self, cfg=cfg)
  197. def load_weights(self, save_path, device='cuda'):
  198. if os.path.exists(save_path):
  199. checkpoint = torch.load(save_path, map_location=device)
  200. self.load_state_dict(checkpoint['model_state_dict'])
  201. # if optimizer is not None:
  202. # optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
  203. # epoch = checkpoint['epoch']
  204. # loss = checkpoint['loss']
  205. # print(f"Loaded best model from {save_path} at epoch {epoch} with loss {loss:.4f}")
  206. print(f"Loaded model from {save_path}")
  207. else:
  208. print(f"No saved model found at {save_path}")
  209. return self
  210. class TwoMLPHead(nn.Module):
  211. """
  212. Standard heads for FPN-based models
  213. Args:
  214. in_channels (int): number of input channels
  215. representation_size (int): size of the intermediate representation
  216. """
  217. def __init__(self, in_channels, representation_size):
  218. super().__init__()
  219. self.fc6 = nn.Linear(in_channels, representation_size)
  220. self.fc7 = nn.Linear(representation_size, representation_size)
  221. def forward(self, x):
  222. x = x.flatten(start_dim=1)
  223. x = F.relu(self.fc6(x))
  224. x = F.relu(self.fc7(x))
  225. return x
  226. class ObjectionConvFCHead(nn.Sequential):
  227. def __init__(
  228. self,
  229. input_size: Tuple[int, int, int],
  230. conv_layers: List[int],
  231. fc_layers: List[int],
  232. norm_layer: Optional[Callable[..., nn.Module]] = None,
  233. ):
  234. """
  235. Args:
  236. input_size (Tuple[int, int, int]): the input size in CHW format.
  237. conv_layers (list): feature dimensions of each Convolution layer
  238. fc_layers (list): feature dimensions of each FCN layer
  239. norm_layer (callable, optional): Module specifying the normalization layer to use. Default: None
  240. """
  241. in_channels, in_height, in_width = input_size
  242. blocks = []
  243. previous_channels = in_channels
  244. for current_channels in conv_layers:
  245. blocks.append(misc_nn_ops.Conv2dNormActivation(previous_channels, current_channels, norm_layer=norm_layer))
  246. previous_channels = current_channels
  247. blocks.append(nn.Flatten())
  248. previous_channels = previous_channels * in_height * in_width
  249. for current_channels in fc_layers:
  250. blocks.append(nn.Linear(previous_channels, current_channels))
  251. blocks.append(nn.ReLU(inplace=True))
  252. previous_channels = current_channels
  253. super().__init__(*blocks)
  254. for layer in self.modules():
  255. if isinstance(layer, nn.Conv2d):
  256. nn.init.kaiming_normal_(layer.weight, mode="fan_out", nonlinearity="relu")
  257. if layer.bias is not None:
  258. nn.init.zeros_(layer.bias)
  259. class ObjectionPredictor(nn.Module):
  260. """
  261. Standard classification + bounding box regression layers
  262. for Fast R-CNN.
  263. Args:
  264. in_channels (int): number of input channels
  265. num_classes (int): number of output classes (including background)
  266. """
  267. def __init__(self, in_channels, num_classes):
  268. super().__init__()
  269. self.cls_score = nn.Linear(in_channels, num_classes)
  270. self.bbox_pred = nn.Linear(in_channels, num_classes * 4)
  271. def forward(self, x):
  272. if x.dim() == 4:
  273. torch._assert(
  274. list(x.shape[2:]) == [1, 1],
  275. f"x has the wrong shape, expecting the last two dimensions to be [1,1] instead of {list(x.shape[2:])}",
  276. )
  277. x = x.flatten(start_dim=1)
  278. scores = self.cls_score(x)
  279. bbox_deltas = self.bbox_pred(x)
  280. return scores, bbox_deltas
  281. def linedetect_newresnet18fpn(
  282. *,
  283. num_classes: Optional[int] = None,
  284. num_points:Optional[int] = None,
  285. **kwargs: Any,
  286. ) -> LineDetect:
  287. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  288. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  289. if num_classes is None:
  290. num_classes = 4
  291. if num_points is None:
  292. num_points = 3
  293. size=512
  294. backbone =resnet18fpn()
  295. featmap_names=['0', '1', '2', '3','4','pool']
  296. # print(f'featmap_names:{featmap_names}')
  297. roi_pooler = MultiScaleRoIAlign(
  298. featmap_names=featmap_names,
  299. output_size=7,
  300. sampling_ratio=2
  301. )
  302. num_features=len(featmap_names)
  303. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  304. # print(f'anchor_sizes:{anchor_sizes}')
  305. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  306. # print(f'aspect_ratios:{aspect_ratios}')
  307. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  308. model = LineDetect(backbone,
  309. num_classes,min_size=size,max_size=size, num_points=num_points,
  310. rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler,
  311. detect_point=False,
  312. detect_line=False,
  313. detect_arc=True,
  314. **kwargs)
  315. return model
  316. def linedetect_newresnet50fpn(
  317. *,
  318. num_classes: Optional[int] = None,
  319. num_points:Optional[int] = None,
  320. **kwargs: Any,
  321. ) -> LineDetect:
  322. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  323. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  324. if num_classes is None:
  325. num_classes = 5
  326. if num_points is None:
  327. num_points = 4
  328. size=768
  329. backbone =resnet50fpn(out_channels=256)
  330. featmap_names=['0', '1', '2', '3','4','pool']
  331. # print(f'featmap_names:{featmap_names}')
  332. roi_pooler = MultiScaleRoIAlign(
  333. featmap_names=featmap_names,
  334. output_size=7,
  335. sampling_ratio=2
  336. )
  337. num_features=len(featmap_names)
  338. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  339. # print(f'anchor_sizes:{anchor_sizes}')
  340. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  341. # print(f'aspect_ratios:{aspect_ratios}')
  342. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  343. model = LineDetect(backbone, num_classes,min_size=size,max_size=size, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler,
  344. detect_point=False,
  345. detect_line=False,
  346. detect_arc=False,
  347. detect_circle=True,
  348. **kwargs)
  349. return model
  350. def linedetect_newresnet101fpn(
  351. *,
  352. num_classes: Optional[int] = None,
  353. num_points:Optional[int] = None,
  354. **kwargs: Any,
  355. ) -> LineDetect:
  356. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  357. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  358. if num_classes is None:
  359. num_classes = 3
  360. if num_points is None:
  361. num_points = 3
  362. size=768
  363. backbone =resnet101fpn(out_channels=256)
  364. featmap_names=['0', '1', '2', '3','4','pool']
  365. # print(f'featmap_names:{featmap_names}')
  366. roi_pooler = MultiScaleRoIAlign(
  367. featmap_names=featmap_names,
  368. output_size=7,
  369. sampling_ratio=2
  370. )
  371. num_features=len(featmap_names)
  372. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  373. # print(f'anchor_sizes:{anchor_sizes}')
  374. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  375. # print(f'aspect_ratios:{aspect_ratios}')
  376. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  377. model = LineDetect(backbone, num_classes,min_size=size,max_size=size, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
  378. return model
  379. def linedetect_newresnet152fpn(
  380. *,
  381. num_classes: Optional[int] = None,
  382. num_points:Optional[int] = None,
  383. **kwargs: Any,
  384. ) -> LineDetect:
  385. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  386. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  387. if num_classes is None:
  388. num_classes = 4
  389. if num_points is None:
  390. num_points = 3
  391. size=800
  392. backbone =resnet101fpn(out_channels=256)
  393. featmap_names=['0', '1', '2', '3','4','pool']
  394. # print(f'featmap_names:{featmap_names}')
  395. roi_pooler = MultiScaleRoIAlign(
  396. featmap_names=featmap_names,
  397. output_size=7,
  398. sampling_ratio=2
  399. )
  400. num_features=len(featmap_names)
  401. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  402. # print(f'anchor_sizes:{anchor_sizes}')
  403. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  404. # print(f'aspect_ratios:{aspect_ratios}')
  405. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  406. model = LineDetect(backbone, num_classes,min_size=size,max_size=size, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
  407. return model
  408. def linedetect_maxvitfpn(
  409. *,
  410. num_classes: Optional[int] = None,
  411. num_points:Optional[int] = None,
  412. **kwargs: Any,
  413. ) -> LineDetect:
  414. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  415. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  416. if num_classes is None:
  417. num_classes = 4
  418. if num_points is None:
  419. num_points = 3
  420. size=224*3
  421. maxvit = MaxVitBackbone(input_size=(size,size))
  422. # print(maxvit.named_children())
  423. # for i,layer in enumerate(maxvit.named_children()):
  424. # print(f'layer:{i}:{layer}')
  425. in_channels_list = [64, 64, 128, 256, 512]
  426. featmap_names = ['0', '1', '2', '3', '4', 'pool']
  427. roi_pooler = MultiScaleRoIAlign(
  428. featmap_names=featmap_names,
  429. output_size=7,
  430. sampling_ratio=2
  431. )
  432. backbone_with_fpn = BackboneWithFPN(
  433. maxvit,
  434. return_layers={'stem': '0', 'block0': '1', 'block1': '2', 'block2': '3', 'block3': '4'},
  435. # 确保这些键对应到实际的层
  436. in_channels_list=in_channels_list,
  437. out_channels=128
  438. )
  439. test_input = torch.randn(1, 3,size,size)
  440. model = LineDetect(
  441. backbone=backbone_with_fpn,
  442. min_size=size,
  443. max_size=size,
  444. num_classes=num_classes, # COCO 数据集有 91 类
  445. rpn_anchor_generator=get_anchor_generator(backbone_with_fpn, test_input=test_input),
  446. box_roi_pool=roi_pooler,
  447. detect_line=False,
  448. detect_point=False,
  449. detect_arc=True,
  450. )
  451. return model
  452. def linedetect_high_maxvitfpn(
  453. *,
  454. num_classes: Optional[int] = None,
  455. num_points:Optional[int] = None,
  456. **kwargs: Any,
  457. ) -> LineDetect:
  458. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  459. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  460. if num_classes is None:
  461. num_classes = 3
  462. if num_points is None:
  463. num_points = 3
  464. size=224*2
  465. maxvitfpn =maxvit_with_fpn(size=size)
  466. # print(maxvit.named_children())
  467. # for i,layer in enumerate(maxvit.named_children()):
  468. # print(f'layer:{i}:{layer}')
  469. in_channels_list = [64,64, 64, 128, 256, 512]
  470. featmap_names = ['0', '1', '2', '3', '4', '5','pool']
  471. roi_pooler = MultiScaleRoIAlign(
  472. featmap_names=featmap_names,
  473. output_size=7,
  474. sampling_ratio=2
  475. )
  476. test_input = torch.randn(1, 3,size,size)
  477. model = LineDetect(
  478. backbone=maxvitfpn,
  479. min_size=size,
  480. max_size=size,
  481. num_classes=3, # COCO 数据集有 91 类
  482. rpn_anchor_generator=get_anchor_generator(maxvitfpn, test_input=test_input),
  483. box_roi_pool=roi_pooler
  484. )
  485. return model
  486. def linedetect_swin_transformer_fpn(
  487. *,
  488. num_classes: Optional[int] = None,
  489. num_points:Optional[int] = None,
  490. type='t',
  491. **kwargs: Any,
  492. ) -> LineDetect:
  493. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  494. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  495. if num_classes is None:
  496. num_classes = 3
  497. if num_points is None:
  498. num_points = 3
  499. size=512
  500. backbone_with_fpn, roi_pooler, anchor_generator=get_swin_transformer_fpn(type=type)
  501. # test_input = torch.randn(1, 3,size,size)
  502. model = LineDetect(
  503. backbone=backbone_with_fpn,
  504. min_size=size,
  505. max_size=size,
  506. num_classes=3, # COCO 数据集有 91 类
  507. rpn_anchor_generator=anchor_generator,
  508. box_roi_pool=roi_pooler,
  509. detect_line=True,
  510. detect_point=False,
  511. )
  512. return model
  513. def linedetect_resnet18_fpn(
  514. *,
  515. num_classes: Optional[int] = None,
  516. num_points: Optional[int] = None,
  517. **kwargs: Any,
  518. ) -> LineDetect:
  519. if num_classes is None:
  520. num_classes = 4
  521. if num_points is None:
  522. num_points = 3
  523. size=1024
  524. backbone = resnet_fpn_backbone(backbone_name='resnet18',weights=None)
  525. model = LineDetect(backbone,min_size=size,max_size=size , num_classes=num_classes, num_points=num_points, **kwargs)
  526. return model
  527. def linedetect_resnet50_fpn(
  528. *,
  529. num_classes: Optional[int] = None,
  530. num_points: Optional[int] = None,
  531. **kwargs: Any,
  532. ) -> LineDetect:
  533. if num_classes is None:
  534. num_classes = 3
  535. if num_points is None:
  536. num_points = 3
  537. backbone = resnet_fpn_backbone(backbone_name='resnet18', weights=None)
  538. model = LineDetect(backbone, num_classes, num_points=num_points, **kwargs)
  539. return model