line_detect.py 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571
  1. import os
  2. from typing import Any, Callable, List, Optional, Tuple, Union
  3. import torch
  4. from torch import nn
  5. from libs.vision_libs import ops
  6. from libs.vision_libs.models import MobileNet_V3_Large_Weights, mobilenet_v3_large, EfficientNet_V2_S_Weights, \
  7. efficientnet_v2_s, detection, EfficientNet_V2_L_Weights, efficientnet_v2_l, EfficientNet_V2_M_Weights, \
  8. efficientnet_v2_m
  9. from libs.vision_libs.models.detection.anchor_utils import AnchorGenerator
  10. from libs.vision_libs.models.detection.rpn import RPNHead, RegionProposalNetwork
  11. from libs.vision_libs.models.detection.ssdlite import _mobilenet_extractor
  12. from libs.vision_libs.models.detection.transform import GeneralizedRCNNTransform
  13. from libs.vision_libs.ops import misc as misc_nn_ops, MultiScaleRoIAlign
  14. from libs.vision_libs.transforms._presets import ObjectDetection
  15. from libs.vision_libs.models._api import register_model, Weights, WeightsEnum
  16. from libs.vision_libs.models._meta import _COCO_PERSON_CATEGORIES, _COCO_PERSON_KEYPOINT_NAMES, _COCO_CATEGORIES
  17. from libs.vision_libs.models._utils import _ovewrite_value_param, handle_legacy_interface
  18. from libs.vision_libs.models.resnet import resnet50, ResNet50_Weights, ResNet18_Weights, resnet18
  19. from libs.vision_libs.models.detection._utils import overwrite_eps
  20. from libs.vision_libs.models.detection.backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers, \
  21. BackboneWithFPN, resnet_fpn_backbone
  22. from libs.vision_libs.models.detection.faster_rcnn import FasterRCNN, TwoMLPHead, FastRCNNPredictor
  23. from .heads.line_heads import LinePredictor
  24. from .heads.point_heads import PointHeads, PointPredictor
  25. from .loi_heads import RoIHeads
  26. from .trainer import Trainer
  27. from ..base import backbone_factory
  28. from ..base.backbone_factory import get_convnext_fpn, get_anchor_generator, get_maxvit_fpn, MaxVitBackbone, \
  29. get_swin_transformer_fpn
  30. # from ..base.backbone_factory import get_convnext_fpn, get_anchor_generator
  31. from ..base.base_detection_net import BaseDetectionNet
  32. import torch.nn.functional as F
  33. from ..base.high_reso_maxvit import maxvit_with_fpn
  34. from ..base.high_reso_resnet import resnet50fpn, resnet18fpn, resnet101fpn
  35. __all__ = [
  36. "LineDetect",
  37. "linedetect_resnet50_fpn",
  38. ]
  39. from ..line_net.line_detect import LineHeads
  40. def _default_anchorgen():
  41. anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
  42. aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
  43. return AnchorGenerator(anchor_sizes, aspect_ratios)
  44. class LineDetect(BaseDetectionNet):
  45. def __init__(
  46. self,
  47. backbone,
  48. num_classes=3,
  49. # transform parameters
  50. min_size=512,
  51. max_size=512,
  52. image_mean=None,
  53. image_std=None,
  54. # RPN parameters
  55. rpn_anchor_generator=None,
  56. rpn_head=None,
  57. rpn_pre_nms_top_n_train=2000,
  58. rpn_pre_nms_top_n_test=1000,
  59. rpn_post_nms_top_n_train=2000,
  60. rpn_post_nms_top_n_test=1000,
  61. rpn_nms_thresh=0.7,
  62. rpn_fg_iou_thresh=0.7,
  63. rpn_bg_iou_thresh=0.3,
  64. rpn_batch_size_per_image=256,
  65. rpn_positive_fraction=0.5,
  66. rpn_score_thresh=0.0,
  67. # Box parameters
  68. box_roi_pool=None,
  69. box_head=None,
  70. box_predictor=None,
  71. box_score_thresh=0.05,
  72. box_nms_thresh=0.5,
  73. box_detections_per_img=200,
  74. box_fg_iou_thresh=0.5,
  75. box_bg_iou_thresh=0.5,
  76. box_batch_size_per_image=512,
  77. box_positive_fraction=0.25,
  78. bbox_reg_weights=None,
  79. # line parameters
  80. line_roi_pool=None,
  81. line_head=None,
  82. line_predictor=None,
  83. # point parameters
  84. point_roi_pool=None,
  85. point_head=None,
  86. point_predictor=None,
  87. # arc parameters
  88. arc_roi_pool=None,
  89. arc_head=None,
  90. arc_predictor=None,
  91. num_points=3,
  92. detect_point=False,
  93. detect_line=True,
  94. detect_arc=False,
  95. **kwargs,
  96. ):
  97. out_channels = backbone.out_channels
  98. if rpn_anchor_generator is None:
  99. rpn_anchor_generator = _default_anchorgen()
  100. if rpn_head is None:
  101. rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
  102. rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
  103. rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)
  104. rpn = RegionProposalNetwork(
  105. rpn_anchor_generator,
  106. rpn_head,
  107. rpn_fg_iou_thresh,
  108. rpn_bg_iou_thresh,
  109. rpn_batch_size_per_image,
  110. rpn_positive_fraction,
  111. rpn_pre_nms_top_n,
  112. rpn_post_nms_top_n,
  113. rpn_nms_thresh,
  114. score_thresh=rpn_score_thresh,
  115. )
  116. if box_roi_pool is None:
  117. box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2)
  118. if box_head is None:
  119. resolution = box_roi_pool.output_size[0]
  120. representation_size = 1024
  121. box_head = TwoMLPHead(out_channels * resolution**2, representation_size)
  122. if box_predictor is None:
  123. representation_size = 1024
  124. box_predictor = ObjectionPredictor(representation_size, num_classes)
  125. roi_heads = RoIHeads(
  126. # Box
  127. box_roi_pool,
  128. box_head,
  129. box_predictor,
  130. box_fg_iou_thresh,
  131. box_bg_iou_thresh,
  132. box_batch_size_per_image,
  133. box_positive_fraction,
  134. bbox_reg_weights,
  135. box_score_thresh,
  136. box_nms_thresh,
  137. box_detections_per_img,
  138. detect_point=detect_point,
  139. detect_line=detect_line,
  140. detect_arc=detect_arc,
  141. )
  142. if image_mean is None:
  143. image_mean = [0.485, 0.456, 0.406]
  144. if image_std is None:
  145. image_std = [0.229, 0.224, 0.225]
  146. transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std, **kwargs)
  147. super().__init__(backbone, rpn, roi_heads, transform)
  148. if line_head is None and detect_line:
  149. layers = tuple(num_points for _ in range(8))
  150. line_head = LineHeads(8, layers)
  151. if line_predictor is None and detect_line:
  152. # keypoint_dim_reduced = 512 # == keypoint_layers[-1]
  153. line_predictor = LinePredictor(in_channels=256)
  154. if point_head is None and detect_point:
  155. layers = tuple(num_points for _ in range(8))
  156. point_head = PointHeads(8, layers)
  157. if point_predictor is None and detect_point:
  158. # keypoint_dim_reduced = 512 # == keypoint_layers[-1]
  159. point_predictor = PointPredictor(in_channels=128)
  160. self.roi_heads.line_roi_pool = line_roi_pool
  161. self.roi_heads.line_head = line_head
  162. self.roi_heads.line_predictor = line_predictor
  163. self.roi_heads.point_roi_pool = point_roi_pool
  164. self.roi_heads.point_head = point_head
  165. self.roi_heads.point_predictor = point_predictor
  166. def start_train(self, cfg):
  167. # cfg = read_yaml(cfg)
  168. self.trainer = Trainer()
  169. self.trainer.train_from_cfg(model=self, cfg=cfg)
  170. def load_weights(self, save_path, device='cuda'):
  171. if os.path.exists(save_path):
  172. checkpoint = torch.load(save_path, map_location=device)
  173. self.load_state_dict(checkpoint['model_state_dict'])
  174. # if optimizer is not None:
  175. # optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
  176. # epoch = checkpoint['epoch']
  177. # loss = checkpoint['loss']
  178. # print(f"Loaded best model from {save_path} at epoch {epoch} with loss {loss:.4f}")
  179. print(f"Loaded model from {save_path}")
  180. else:
  181. print(f"No saved model found at {save_path}")
  182. return self
  183. class TwoMLPHead(nn.Module):
  184. """
  185. Standard heads for FPN-based models
  186. Args:
  187. in_channels (int): number of input channels
  188. representation_size (int): size of the intermediate representation
  189. """
  190. def __init__(self, in_channels, representation_size):
  191. super().__init__()
  192. self.fc6 = nn.Linear(in_channels, representation_size)
  193. self.fc7 = nn.Linear(representation_size, representation_size)
  194. def forward(self, x):
  195. x = x.flatten(start_dim=1)
  196. x = F.relu(self.fc6(x))
  197. x = F.relu(self.fc7(x))
  198. return x
  199. class ObjectionConvFCHead(nn.Sequential):
  200. def __init__(
  201. self,
  202. input_size: Tuple[int, int, int],
  203. conv_layers: List[int],
  204. fc_layers: List[int],
  205. norm_layer: Optional[Callable[..., nn.Module]] = None,
  206. ):
  207. """
  208. Args:
  209. input_size (Tuple[int, int, int]): the input size in CHW format.
  210. conv_layers (list): feature dimensions of each Convolution layer
  211. fc_layers (list): feature dimensions of each FCN layer
  212. norm_layer (callable, optional): Module specifying the normalization layer to use. Default: None
  213. """
  214. in_channels, in_height, in_width = input_size
  215. blocks = []
  216. previous_channels = in_channels
  217. for current_channels in conv_layers:
  218. blocks.append(misc_nn_ops.Conv2dNormActivation(previous_channels, current_channels, norm_layer=norm_layer))
  219. previous_channels = current_channels
  220. blocks.append(nn.Flatten())
  221. previous_channels = previous_channels * in_height * in_width
  222. for current_channels in fc_layers:
  223. blocks.append(nn.Linear(previous_channels, current_channels))
  224. blocks.append(nn.ReLU(inplace=True))
  225. previous_channels = current_channels
  226. super().__init__(*blocks)
  227. for layer in self.modules():
  228. if isinstance(layer, nn.Conv2d):
  229. nn.init.kaiming_normal_(layer.weight, mode="fan_out", nonlinearity="relu")
  230. if layer.bias is not None:
  231. nn.init.zeros_(layer.bias)
  232. class ObjectionPredictor(nn.Module):
  233. """
  234. Standard classification + bounding box regression layers
  235. for Fast R-CNN.
  236. Args:
  237. in_channels (int): number of input channels
  238. num_classes (int): number of output classes (including background)
  239. """
  240. def __init__(self, in_channels, num_classes):
  241. super().__init__()
  242. self.cls_score = nn.Linear(in_channels, num_classes)
  243. self.bbox_pred = nn.Linear(in_channels, num_classes * 4)
  244. def forward(self, x):
  245. if x.dim() == 4:
  246. torch._assert(
  247. list(x.shape[2:]) == [1, 1],
  248. f"x has the wrong shape, expecting the last two dimensions to be [1,1] instead of {list(x.shape[2:])}",
  249. )
  250. x = x.flatten(start_dim=1)
  251. scores = self.cls_score(x)
  252. bbox_deltas = self.bbox_pred(x)
  253. return scores, bbox_deltas
  254. def linedetect_newresnet18fpn(
  255. *,
  256. num_classes: Optional[int] = None,
  257. num_points:Optional[int] = None,
  258. **kwargs: Any,
  259. ) -> LineDetect:
  260. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  261. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  262. if num_classes is None:
  263. num_classes = 3
  264. if num_points is None:
  265. num_points = 3
  266. size=1024
  267. backbone =resnet18fpn()
  268. featmap_names=['0', '1', '2', '3','4','pool']
  269. # print(f'featmap_names:{featmap_names}')
  270. roi_pooler = MultiScaleRoIAlign(
  271. featmap_names=featmap_names,
  272. output_size=7,
  273. sampling_ratio=2
  274. )
  275. num_features=len(featmap_names)
  276. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  277. # print(f'anchor_sizes:{anchor_sizes}')
  278. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  279. # print(f'aspect_ratios:{aspect_ratios}')
  280. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  281. model = LineDetect(backbone, num_classes,min_size=size,max_size=size, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
  282. return model
  283. def linedetect_newresnet50fpn(
  284. *,
  285. num_classes: Optional[int] = None,
  286. num_points:Optional[int] = None,
  287. **kwargs: Any,
  288. ) -> LineDetect:
  289. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  290. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  291. if num_classes is None:
  292. num_classes = 3
  293. if num_points is None:
  294. num_points = 3
  295. size=768
  296. backbone =resnet50fpn(out_channels=256)
  297. featmap_names=['0', '1', '2', '3','4','pool']
  298. # print(f'featmap_names:{featmap_names}')
  299. roi_pooler = MultiScaleRoIAlign(
  300. featmap_names=featmap_names,
  301. output_size=7,
  302. sampling_ratio=2
  303. )
  304. num_features=len(featmap_names)
  305. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  306. # print(f'anchor_sizes:{anchor_sizes}')
  307. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  308. # print(f'aspect_ratios:{aspect_ratios}')
  309. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  310. model = LineDetect(backbone, num_classes,min_size=size,max_size=size, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
  311. return model
  312. def linedetect_newresnet101fpn(
  313. *,
  314. num_classes: Optional[int] = None,
  315. num_points:Optional[int] = None,
  316. **kwargs: Any,
  317. ) -> LineDetect:
  318. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  319. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  320. if num_classes is None:
  321. num_classes = 3
  322. if num_points is None:
  323. num_points = 3
  324. backbone =resnet101fpn(out_channels=256)
  325. featmap_names=['0', '1', '2', '3','4','pool']
  326. # print(f'featmap_names:{featmap_names}')
  327. roi_pooler = MultiScaleRoIAlign(
  328. featmap_names=featmap_names,
  329. output_size=7,
  330. sampling_ratio=2
  331. )
  332. num_features=len(featmap_names)
  333. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  334. # print(f'anchor_sizes:{anchor_sizes}')
  335. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  336. # print(f'aspect_ratios:{aspect_ratios}')
  337. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  338. model = LineDetect(backbone, num_classes, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
  339. return model
  340. def linedetect_maxvitfpn(
  341. *,
  342. num_classes: Optional[int] = None,
  343. num_points:Optional[int] = None,
  344. **kwargs: Any,
  345. ) -> LineDetect:
  346. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  347. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  348. if num_classes is None:
  349. num_classes = 3
  350. if num_points is None:
  351. num_points = 3
  352. size=224*3
  353. maxvit = MaxVitBackbone(input_size=(size,size))
  354. # print(maxvit.named_children())
  355. # for i,layer in enumerate(maxvit.named_children()):
  356. # print(f'layer:{i}:{layer}')
  357. in_channels_list = [64, 64, 128, 256, 512]
  358. featmap_names = ['0', '1', '2', '3', '4', 'pool']
  359. roi_pooler = MultiScaleRoIAlign(
  360. featmap_names=featmap_names,
  361. output_size=7,
  362. sampling_ratio=2
  363. )
  364. backbone_with_fpn = BackboneWithFPN(
  365. maxvit,
  366. return_layers={'stem': '0', 'block0': '1', 'block1': '2', 'block2': '3', 'block3': '4'},
  367. # 确保这些键对应到实际的层
  368. in_channels_list=in_channels_list,
  369. out_channels=128
  370. )
  371. test_input = torch.randn(1, 3,size,size)
  372. model = LineDetect(
  373. backbone=backbone_with_fpn,
  374. min_size=size,
  375. max_size=size,
  376. num_classes=3, # COCO 数据集有 91 类
  377. rpn_anchor_generator=get_anchor_generator(backbone_with_fpn, test_input=test_input),
  378. box_roi_pool=roi_pooler,
  379. detect_line=True,
  380. detect_point=False,
  381. )
  382. return model
  383. def linedetect_high_maxvitfpn(
  384. *,
  385. num_classes: Optional[int] = None,
  386. num_points:Optional[int] = None,
  387. **kwargs: Any,
  388. ) -> LineDetect:
  389. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  390. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  391. if num_classes is None:
  392. num_classes = 3
  393. if num_points is None:
  394. num_points = 3
  395. size=224*2
  396. maxvitfpn =maxvit_with_fpn(size=size)
  397. # print(maxvit.named_children())
  398. # for i,layer in enumerate(maxvit.named_children()):
  399. # print(f'layer:{i}:{layer}')
  400. in_channels_list = [64,64, 64, 128, 256, 512]
  401. featmap_names = ['0', '1', '2', '3', '4', '5','pool']
  402. roi_pooler = MultiScaleRoIAlign(
  403. featmap_names=featmap_names,
  404. output_size=7,
  405. sampling_ratio=2
  406. )
  407. test_input = torch.randn(1, 3,size,size)
  408. model = LineDetect(
  409. backbone=maxvitfpn,
  410. min_size=size,
  411. max_size=size,
  412. num_classes=3, # COCO 数据集有 91 类
  413. rpn_anchor_generator=get_anchor_generator(maxvitfpn, test_input=test_input),
  414. box_roi_pool=roi_pooler
  415. )
  416. return model
  417. def linedetect_swin_transformer_fpn(
  418. *,
  419. num_classes: Optional[int] = None,
  420. num_points:Optional[int] = None,
  421. type='t',
  422. **kwargs: Any,
  423. ) -> LineDetect:
  424. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  425. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  426. if num_classes is None:
  427. num_classes = 3
  428. if num_points is None:
  429. num_points = 3
  430. size=512
  431. backbone_with_fpn, roi_pooler, anchor_generator=get_swin_transformer_fpn(type=type)
  432. # test_input = torch.randn(1, 3,size,size)
  433. model = LineDetect(
  434. backbone=backbone_with_fpn,
  435. min_size=size,
  436. max_size=size,
  437. num_classes=3, # COCO 数据集有 91 类
  438. rpn_anchor_generator=anchor_generator,
  439. box_roi_pool=roi_pooler,
  440. detect_line=True,
  441. detect_point=False,
  442. )
  443. return model
  444. def linedetect_resnet18_fpn(
  445. *,
  446. num_classes: Optional[int] = None,
  447. num_points: Optional[int] = None,
  448. **kwargs: Any,
  449. ) -> LineDetect:
  450. if num_classes is None:
  451. num_classes = 3
  452. if num_points is None:
  453. num_points = 3
  454. size=1024
  455. backbone = resnet_fpn_backbone(backbone_name='resnet18',weights=None)
  456. model = LineDetect(backbone,min_size=size,max_size=size , num_classes=num_classes, num_points=num_points, **kwargs)
  457. return model
  458. def linedetect_resnet50_fpn(
  459. *,
  460. num_classes: Optional[int] = None,
  461. num_points: Optional[int] = None,
  462. **kwargs: Any,
  463. ) -> LineDetect:
  464. if num_classes is None:
  465. num_classes = 3
  466. if num_points is None:
  467. num_points = 3
  468. backbone = resnet_fpn_backbone(backbone_name='resnet18', weights=None)
  469. model = LineDetect(backbone, num_classes, num_points=num_points, **kwargs)
  470. return model