line_detect.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522
  1. import os
  2. from typing import Any, Callable, List, Optional, Tuple, Union
  3. import torch
  4. from torch import nn
  5. from libs.vision_libs import ops
  6. from libs.vision_libs.models import MobileNet_V3_Large_Weights, mobilenet_v3_large, EfficientNet_V2_S_Weights, \
  7. efficientnet_v2_s, detection, EfficientNet_V2_L_Weights, efficientnet_v2_l, EfficientNet_V2_M_Weights, \
  8. efficientnet_v2_m
  9. from libs.vision_libs.models.detection.anchor_utils import AnchorGenerator
  10. from libs.vision_libs.models.detection.rpn import RPNHead, RegionProposalNetwork
  11. from libs.vision_libs.models.detection.ssdlite import _mobilenet_extractor
  12. from libs.vision_libs.models.detection.transform import GeneralizedRCNNTransform
  13. from libs.vision_libs.ops import misc as misc_nn_ops, MultiScaleRoIAlign
  14. from libs.vision_libs.transforms._presets import ObjectDetection
  15. from libs.vision_libs.models._api import register_model, Weights, WeightsEnum
  16. from libs.vision_libs.models._meta import _COCO_PERSON_CATEGORIES, _COCO_PERSON_KEYPOINT_NAMES, _COCO_CATEGORIES
  17. from libs.vision_libs.models._utils import _ovewrite_value_param, handle_legacy_interface
  18. from libs.vision_libs.models.resnet import resnet50, ResNet50_Weights, ResNet18_Weights, resnet18
  19. from libs.vision_libs.models.detection._utils import overwrite_eps
  20. from libs.vision_libs.models.detection.backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers, \
  21. BackboneWithFPN, resnet_fpn_backbone
  22. from libs.vision_libs.models.detection.faster_rcnn import FasterRCNN, TwoMLPHead, FastRCNNPredictor
  23. from .loi_heads import RoIHeads
  24. from .trainer import Trainer
  25. from ..base import backbone_factory
  26. from ..base.backbone_factory import get_convnext_fpn, get_anchor_generator, get_maxvit_fpn, MaxVitBackbone
  27. # from ..base.backbone_factory import get_convnext_fpn, get_anchor_generator
  28. from ..base.base_detection_net import BaseDetectionNet
  29. import torch.nn.functional as F
  30. from ..base.high_reso_maxvit import maxvit_with_fpn
  31. from ..base.high_reso_resnet import resnet50fpn, resnet18fpn, resnet101fpn
  32. __all__ = [
  33. "LineDetect",
  34. "linedetect_resnet50_fpn",
  35. ]
  36. def _default_anchorgen():
  37. anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
  38. aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
  39. return AnchorGenerator(anchor_sizes, aspect_ratios)
  40. class LineDetect(BaseDetectionNet):
  41. def __init__(
  42. self,
  43. backbone,
  44. num_classes=3,
  45. # transform parameters
  46. min_size=512,
  47. max_size=512,
  48. image_mean=None,
  49. image_std=None,
  50. # RPN parameters
  51. rpn_anchor_generator=None,
  52. rpn_head=None,
  53. rpn_pre_nms_top_n_train=2000,
  54. rpn_pre_nms_top_n_test=1000,
  55. rpn_post_nms_top_n_train=2000,
  56. rpn_post_nms_top_n_test=1000,
  57. rpn_nms_thresh=0.7,
  58. rpn_fg_iou_thresh=0.7,
  59. rpn_bg_iou_thresh=0.3,
  60. rpn_batch_size_per_image=256,
  61. rpn_positive_fraction=0.5,
  62. rpn_score_thresh=0.0,
  63. # Box parameters
  64. box_roi_pool=None,
  65. box_head=None,
  66. box_predictor=None,
  67. box_score_thresh=0.05,
  68. box_nms_thresh=0.5,
  69. box_detections_per_img=200,
  70. box_fg_iou_thresh=0.5,
  71. box_bg_iou_thresh=0.5,
  72. box_batch_size_per_image=512,
  73. box_positive_fraction=0.25,
  74. bbox_reg_weights=None,
  75. # keypoint parameters
  76. line_roi_pool=None,
  77. line_head=None,
  78. line_predictor=None,
  79. num_points=3,
  80. **kwargs,
  81. ):
  82. out_channels = backbone.out_channels
  83. if rpn_anchor_generator is None:
  84. rpn_anchor_generator = _default_anchorgen()
  85. if rpn_head is None:
  86. rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
  87. rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
  88. rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)
  89. rpn = RegionProposalNetwork(
  90. rpn_anchor_generator,
  91. rpn_head,
  92. rpn_fg_iou_thresh,
  93. rpn_bg_iou_thresh,
  94. rpn_batch_size_per_image,
  95. rpn_positive_fraction,
  96. rpn_pre_nms_top_n,
  97. rpn_post_nms_top_n,
  98. rpn_nms_thresh,
  99. score_thresh=rpn_score_thresh,
  100. )
  101. if box_roi_pool is None:
  102. box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2)
  103. if box_head is None:
  104. resolution = box_roi_pool.output_size[0]
  105. representation_size = 1024
  106. box_head = TwoMLPHead(out_channels * resolution**2, representation_size)
  107. if box_predictor is None:
  108. representation_size = 1024
  109. box_predictor = ObjectionPredictor(representation_size, num_classes)
  110. roi_heads = RoIHeads(
  111. # Box
  112. box_roi_pool,
  113. box_head,
  114. box_predictor,
  115. box_fg_iou_thresh,
  116. box_bg_iou_thresh,
  117. box_batch_size_per_image,
  118. box_positive_fraction,
  119. bbox_reg_weights,
  120. box_score_thresh,
  121. box_nms_thresh,
  122. box_detections_per_img,
  123. )
  124. if image_mean is None:
  125. image_mean = [0.485, 0.456, 0.406]
  126. if image_std is None:
  127. image_std = [0.229, 0.224, 0.225]
  128. transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std, **kwargs)
  129. super().__init__(backbone, rpn, roi_heads, transform)
  130. if line_head is None:
  131. keypoint_layers = tuple(num_points for _ in range(8))
  132. line_head = LineHeads(8, keypoint_layers)
  133. # if line_predictor is None:
  134. # keypoint_dim_reduced = 512 # == keypoint_layers[-1]
  135. # line_predictor = LinePredictor(keypoint_dim_reduced)
  136. self.roi_heads.line_roi_pool = line_roi_pool
  137. self.roi_heads.line_head = line_head
  138. self.roi_heads.line_predictor = line_predictor
  139. def start_train(self, cfg):
  140. # cfg = read_yaml(cfg)
  141. self.trainer = Trainer()
  142. self.trainer.train_from_cfg(model=self, cfg=cfg)
  143. def load_weights(self, save_path, device='cuda'):
  144. if os.path.exists(save_path):
  145. checkpoint = torch.load(save_path, map_location=device)
  146. self.load_state_dict(checkpoint['model_state_dict'])
  147. # if optimizer is not None:
  148. # optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
  149. # epoch = checkpoint['epoch']
  150. # loss = checkpoint['loss']
  151. # print(f"Loaded best model from {save_path} at epoch {epoch} with loss {loss:.4f}")
  152. print(f"Loaded model from {save_path}")
  153. else:
  154. print(f"No saved model found at {save_path}")
  155. return self
  156. class TwoMLPHead(nn.Module):
  157. """
  158. Standard heads for FPN-based models
  159. Args:
  160. in_channels (int): number of input channels
  161. representation_size (int): size of the intermediate representation
  162. """
  163. def __init__(self, in_channels, representation_size):
  164. super().__init__()
  165. self.fc6 = nn.Linear(in_channels, representation_size)
  166. self.fc7 = nn.Linear(representation_size, representation_size)
  167. def forward(self, x):
  168. x = x.flatten(start_dim=1)
  169. x = F.relu(self.fc6(x))
  170. x = F.relu(self.fc7(x))
  171. return x
  172. class ObjectionConvFCHead(nn.Sequential):
  173. def __init__(
  174. self,
  175. input_size: Tuple[int, int, int],
  176. conv_layers: List[int],
  177. fc_layers: List[int],
  178. norm_layer: Optional[Callable[..., nn.Module]] = None,
  179. ):
  180. """
  181. Args:
  182. input_size (Tuple[int, int, int]): the input size in CHW format.
  183. conv_layers (list): feature dimensions of each Convolution layer
  184. fc_layers (list): feature dimensions of each FCN layer
  185. norm_layer (callable, optional): Module specifying the normalization layer to use. Default: None
  186. """
  187. in_channels, in_height, in_width = input_size
  188. blocks = []
  189. previous_channels = in_channels
  190. for current_channels in conv_layers:
  191. blocks.append(misc_nn_ops.Conv2dNormActivation(previous_channels, current_channels, norm_layer=norm_layer))
  192. previous_channels = current_channels
  193. blocks.append(nn.Flatten())
  194. previous_channels = previous_channels * in_height * in_width
  195. for current_channels in fc_layers:
  196. blocks.append(nn.Linear(previous_channels, current_channels))
  197. blocks.append(nn.ReLU(inplace=True))
  198. previous_channels = current_channels
  199. super().__init__(*blocks)
  200. for layer in self.modules():
  201. if isinstance(layer, nn.Conv2d):
  202. nn.init.kaiming_normal_(layer.weight, mode="fan_out", nonlinearity="relu")
  203. if layer.bias is not None:
  204. nn.init.zeros_(layer.bias)
  205. class ObjectionPredictor(nn.Module):
  206. """
  207. Standard classification + bounding box regression layers
  208. for Fast R-CNN.
  209. Args:
  210. in_channels (int): number of input channels
  211. num_classes (int): number of output classes (including background)
  212. """
  213. def __init__(self, in_channels, num_classes):
  214. super().__init__()
  215. self.cls_score = nn.Linear(in_channels, num_classes)
  216. self.bbox_pred = nn.Linear(in_channels, num_classes * 4)
  217. def forward(self, x):
  218. if x.dim() == 4:
  219. torch._assert(
  220. list(x.shape[2:]) == [1, 1],
  221. f"x has the wrong shape, expecting the last two dimensions to be [1,1] instead of {list(x.shape[2:])}",
  222. )
  223. x = x.flatten(start_dim=1)
  224. scores = self.cls_score(x)
  225. bbox_deltas = self.bbox_pred(x)
  226. return scores, bbox_deltas
  227. class LineHeads(nn.Sequential):
  228. def __init__(self, in_channels, layers):
  229. d = []
  230. next_feature = in_channels
  231. for out_channels in layers:
  232. d.append(nn.Conv2d(next_feature, out_channels, 3, stride=1, padding=1))
  233. d.append(nn.ReLU(inplace=True))
  234. next_feature = out_channels
  235. super().__init__(*d)
  236. for m in self.children():
  237. if isinstance(m, nn.Conv2d):
  238. nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
  239. nn.init.constant_(m.bias, 0)
  240. def linedetect_newresnet18fpn(
  241. *,
  242. num_classes: Optional[int] = None,
  243. num_points:Optional[int] = None,
  244. **kwargs: Any,
  245. ) -> LineDetect:
  246. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  247. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  248. if num_classes is None:
  249. num_classes = 3
  250. if num_points is None:
  251. num_points = 3
  252. backbone =resnet18fpn()
  253. featmap_names=['0', '1', '2', '3','4','pool']
  254. # print(f'featmap_names:{featmap_names}')
  255. roi_pooler = MultiScaleRoIAlign(
  256. featmap_names=featmap_names,
  257. output_size=7,
  258. sampling_ratio=2
  259. )
  260. num_features=len(featmap_names)
  261. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  262. # print(f'anchor_sizes:{anchor_sizes}')
  263. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  264. # print(f'aspect_ratios:{aspect_ratios}')
  265. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  266. model = LineDetect(backbone, num_classes, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
  267. return model
  268. def linedetect_newresnet50fpn(
  269. *,
  270. num_classes: Optional[int] = None,
  271. num_points:Optional[int] = None,
  272. **kwargs: Any,
  273. ) -> LineDetect:
  274. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  275. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  276. if num_classes is None:
  277. num_classes = 3
  278. if num_points is None:
  279. num_points = 3
  280. backbone =resnet50fpn()
  281. featmap_names=['0', '1', '2', '3','4','pool']
  282. # print(f'featmap_names:{featmap_names}')
  283. roi_pooler = MultiScaleRoIAlign(
  284. featmap_names=featmap_names,
  285. output_size=7,
  286. sampling_ratio=2
  287. )
  288. num_features=len(featmap_names)
  289. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  290. # print(f'anchor_sizes:{anchor_sizes}')
  291. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  292. # print(f'aspect_ratios:{aspect_ratios}')
  293. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  294. model = LineDetect(backbone, num_classes, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
  295. return model
  296. def linedetect_newresnet101fpn(
  297. *,
  298. num_classes: Optional[int] = None,
  299. num_points:Optional[int] = None,
  300. **kwargs: Any,
  301. ) -> LineDetect:
  302. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  303. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  304. if num_classes is None:
  305. num_classes = 3
  306. if num_points is None:
  307. num_points = 3
  308. backbone =resnet101fpn()
  309. featmap_names=['0', '1', '2', '3','4','pool']
  310. # print(f'featmap_names:{featmap_names}')
  311. roi_pooler = MultiScaleRoIAlign(
  312. featmap_names=featmap_names,
  313. output_size=7,
  314. sampling_ratio=2
  315. )
  316. num_features=len(featmap_names)
  317. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  318. # print(f'anchor_sizes:{anchor_sizes}')
  319. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  320. # print(f'aspect_ratios:{aspect_ratios}')
  321. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  322. model = LineDetect(backbone, num_classes, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
  323. return model
  324. def linedetect_maxvitfpn(
  325. *,
  326. num_classes: Optional[int] = None,
  327. num_points:Optional[int] = None,
  328. **kwargs: Any,
  329. ) -> LineDetect:
  330. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  331. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  332. if num_classes is None:
  333. num_classes = 3
  334. if num_points is None:
  335. num_points = 3
  336. size=224*4
  337. maxvit = MaxVitBackbone(input_size=(size,size))
  338. # print(maxvit.named_children())
  339. # for i,layer in enumerate(maxvit.named_children()):
  340. # print(f'layer:{i}:{layer}')
  341. in_channels_list = [64, 64, 128, 256, 512]
  342. featmap_names = ['0', '1', '2', '3', '4', 'pool']
  343. roi_pooler = MultiScaleRoIAlign(
  344. featmap_names=featmap_names,
  345. output_size=7,
  346. sampling_ratio=2
  347. )
  348. backbone_with_fpn = BackboneWithFPN(
  349. maxvit,
  350. return_layers={'stem': '0', 'block0': '1', 'block1': '2', 'block2': '3', 'block3': '4'},
  351. # 确保这些键对应到实际的层
  352. in_channels_list=in_channels_list,
  353. out_channels=64
  354. )
  355. test_input = torch.randn(1, 3,size,size)
  356. model = LineDetect(
  357. backbone=backbone_with_fpn,
  358. min_size=size,
  359. max_size=size,
  360. num_classes=3, # COCO 数据集有 91 类
  361. rpn_anchor_generator=get_anchor_generator(backbone_with_fpn, test_input=test_input),
  362. box_roi_pool=roi_pooler
  363. )
  364. return model
  365. def linedetect_high_maxvitfpn(
  366. *,
  367. num_classes: Optional[int] = None,
  368. num_points:Optional[int] = None,
  369. **kwargs: Any,
  370. ) -> LineDetect:
  371. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  372. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  373. if num_classes is None:
  374. num_classes = 3
  375. if num_points is None:
  376. num_points = 3
  377. size=224*2
  378. maxvitfpn =maxvit_with_fpn(size=size)
  379. # print(maxvit.named_children())
  380. # for i,layer in enumerate(maxvit.named_children()):
  381. # print(f'layer:{i}:{layer}')
  382. in_channels_list = [64,64, 64, 128, 256, 512]
  383. featmap_names = ['0', '1', '2', '3', '4', '5','pool']
  384. roi_pooler = MultiScaleRoIAlign(
  385. featmap_names=featmap_names,
  386. output_size=7,
  387. sampling_ratio=2
  388. )
  389. test_input = torch.randn(1, 3,size,size)
  390. model = LineDetect(
  391. backbone=maxvitfpn,
  392. min_size=size,
  393. max_size=size,
  394. num_classes=3, # COCO 数据集有 91 类
  395. rpn_anchor_generator=get_anchor_generator(maxvitfpn, test_input=test_input),
  396. box_roi_pool=roi_pooler
  397. )
  398. return model
  399. def linedetect_resnet18_fpn(
  400. *,
  401. num_classes: Optional[int] = None,
  402. num_points: Optional[int] = None,
  403. **kwargs: Any,
  404. ) -> LineDetect:
  405. if num_classes is None:
  406. num_classes = 3
  407. if num_points is None:
  408. num_points = 3
  409. backbone = resnet_fpn_backbone(backbone_name='resnet18',weights=None)
  410. model = LineDetect(backbone, num_classes, num_points=num_points, **kwargs)
  411. return model
  412. def linedetect_resnet50_fpn(
  413. *,
  414. num_classes: Optional[int] = None,
  415. num_points: Optional[int] = None,
  416. **kwargs: Any,
  417. ) -> LineDetect:
  418. if num_classes is None:
  419. num_classes = 3
  420. if num_points is None:
  421. num_points = 3
  422. backbone = resnet_fpn_backbone(backbone_name='resnet18', weights=None)
  423. model = LineDetect(backbone, num_classes, num_points=num_points, **kwargs)
  424. return model