| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462 |
- # import time
- #
- # from models.line_detect.postprocess import show_predict
- # import os
- #
- # import torch
- # from PIL import Image
- # import matplotlib.pyplot as plt
- # import matplotlib as mpl
- # import numpy as np
- # from models.line_detect.line_net import linenet_resnet50_fpn
- # from torchvision import transforms
- # from rtree import index
- # # from models.wirenet.postprocess import postprocess
- # from models.wirenet.postprocess import postprocess
- #
- # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
- #
- #
- # def load_best_model(model, save_path, device):
- # if os.path.exists(save_path):
- # checkpoint = torch.load(save_path, map_location=device)
- # model.load_state_dict(checkpoint['model_state_dict'])
- # # if optimizer is not None:
- # # optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
- # epoch = checkpoint['epoch']
- # loss = checkpoint['loss']
- # print(f"Loaded best model from {save_path} at epoch {epoch} with loss {loss:.4f}")
- # else:
- # print(f"No saved model found at {save_path}")
- # return model
- #
- #
- # def box_line_optimized(pred):
- # # 创建R-tree索引
- # idx = index.Index()
- #
- # # 将所有线段添加到R-tree中
- # lines = pred[-1]['wires']['lines'] # 形状为[1, 2500, 2, 2]
- # scores = pred[-1]['wires']['score'][0] # 假设形状为[2500]
- #
- # # 提取并处理所有线段
- # for idx_line in range(lines.shape[1]): # 遍历2500条线段
- # line_tensor = lines[0, idx_line].cpu().numpy() / 128 * 512 # 转换为numpy数组并调整比例
- # x_min = float(min(line_tensor[0][0], line_tensor[1][0]))
- # y_min = float(min(line_tensor[0][1], line_tensor[1][1]))
- # x_max = float(max(line_tensor[0][0], line_tensor[1][0]))
- # y_max = float(max(line_tensor[0][1], line_tensor[1][1]))
- # idx.insert(idx_line, (x_min, y_min, x_max, y_max))
- #
- # for idx_box, box_ in enumerate(pred[0:-1]):
- # box = box_['boxes'].cpu().numpy() # 确保将张量转换为numpy数组
- # line_ = []
- # score_ = []
- #
- # for i in box:
- # score_max = 0.0
- # tmp = [[0.0, 0.0], [0.0, 0.0]]
- #
- # # 获取与当前box可能相交的所有线段
- # possible_matches = list(idx.intersection((i[0], i[1], i[2], i[3])))
- #
- # for j in possible_matches:
- # line_j = lines[0, j].cpu().numpy() / 128 * 512
- # if (line_j[0][1] >= i[0] and line_j[1][1] >= i[0] and # 注意这里交换了x和y
- # line_j[0][1] <= i[2] and line_j[1][1] <= i[2] and
- # line_j[0][0] >= i[1] and line_j[1][0] >= i[1] and
- # line_j[0][0] <= i[3] and line_j[1][0] <= i[3]):
- #
- # if scores[j] > score_max:
- # tmp = line_j
- # score_max = scores[j]
- #
- # line_.append(tmp)
- # score_.append(score_max)
- #
- # processed_list = torch.tensor(line_)
- # pred[idx_box]['line'] = processed_list
- #
- # processed_s_list = torch.tensor(score_)
- # pred[idx_box]['line_score'] = processed_s_list
- #
- # return pred
- #
- # # def box_line_(pred):
- # # for idx, box_ in enumerate(pred[0:-1]):
- # # box = box_['boxes'] # 是一个tensor
- # # line = pred[-1]['wires']['lines'][idx].cpu().numpy() / 128 * 512
- # # score = pred[-1]['wires']['score'][idx]
- # # line_ = []
- # # score_ = []
- # #
- # # for i in box:
- # # score_max = 0.0
- # # tmp = [[0.0, 0.0], [0.0, 0.0]]
- # #
- # # for j in range(len(line)):
- # # if (line[j][0][1] >= i[0] and line[j][1][1] >= i[0] and
- # # line[j][0][1] <= i[2] and line[j][1][1] <= i[2] and
- # # line[j][0][0] >= i[1] and line[j][1][0] >= i[1] and
- # # line[j][0][0] <= i[3] and line[j][1][0] <= i[3]):
- # #
- # # if score[j] > score_max:
- # # tmp = line[j]
- # # score_max = score[j]
- # # line_.append(tmp)
- # # score_.append(score_max)
- # # processed_list = torch.tensor(line_)
- # # pred[idx]['line'] = processed_list
- # #
- # # processed_s_list = torch.tensor(score_)
- # # pred[idx]['line_score'] = processed_s_list
- # # return pred
- #
- #
- # def predict(pt_path, model, img):
- # model = load_best_model(model, pt_path, device)
- #
- # model.eval()
- #
- # if isinstance(img, str):
- # img = Image.open(img).convert("RGB")
- #
- # transform = transforms.ToTensor()
- # img_tensor = transform(img)
- #
- # with torch.no_grad():
- # t_start = time.time()
- # predictions = model([img_tensor.to(device)])
- # t_end=time.time()
- # print(f'predict used:{t_end-t_start}')
- # # print(f'predictions:{predictions}')
- # boxes=predictions[0]['boxes'].shape
- # lines=predictions[-1]['wires']['lines'].shape
- # lines_scores=predictions[-1]['wires']['score'].shape
- # print(f'predictions boxes:{boxes},lines:{lines},lines_scores:{lines_scores}')
- # t_start=time.time()
- # pred = box_line_optimized(predictions)
- # t_end=time.time()
- # print(f'matched boxes and lines used:{t_end - t_start}')
- # # print(f'pred:{pred[0]}')
- # show_predict(img_tensor, pred, t_start)
- #
- #
- # if __name__ == '__main__':
- # t_start = time.time()
- # print(f'start to predict:{t_start}')
- # model = linenet_resnet50_fpn().to(device)
- # pt_path = r"F:\BaiduNetdiskDownload\resnet50_best_e8.pth"
- # img_path = r"I:\datasets\wirenet_1000\images\val\00035148_0.png"
- # predict(pt_path, model, img_path)
- # t_end = time.time()
- # # print(f'predict used:{t_end - t_start}')
- import time
- import skimage
- import os
- import torch
- from PIL import Image
- import matplotlib.pyplot as plt
- import matplotlib as mpl
- import numpy as np
- from models.line_detect.line_net import linenet_resnet50_fpn
- from torchvision import transforms
- # from models.wirenet.postprocess import postprocess
- from models.wirenet.postprocess import postprocess
- from rtree import index
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
- def load_best_model(model, save_path, device):
- if os.path.exists(save_path):
- checkpoint = torch.load(save_path, map_location=device)
- model.load_state_dict(checkpoint['model_state_dict'])
- # if optimizer is not None:
- # optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
- # epoch = checkpoint['epoch']
- # loss = checkpoint['loss']
- # print(f"Loaded best model from {save_path} at epoch {epoch} with loss {loss:.4f}")
- else:
- print(f"No saved model found at {save_path}")
- return model
- def box_line_(imgs, pred, length=False): # 默认置信度
- im = imgs.permute(1, 2, 0).cpu().numpy()
- line_data = pred[-1]['wires']['lines'][0].cpu().numpy() / 128 * 512
- line_scores = pred[-1]['wires']['score'].cpu().numpy()[0]
- diag = (im.shape[0] ** 2 + im.shape[1] ** 2) ** 0.5
- line, score = postprocess(line_data, line_scores, diag * 0.01, 0, False)
- for idx, box_ in enumerate(pred[0:-1]):
- box = box_['boxes'] # 是一个tensor
- line_ = []
- score_ = []
- for i in box:
- score_max = 0.0
- tmp = [[0.0, 0.0], [0.0, 0.0]]
- for j in range(len(line)):
- if (line[j][0][1] >= i[0] and line[j][1][1] >= i[0] and
- line[j][0][1] <= i[2] and line[j][1][1] <= i[2] and
- line[j][0][0] >= i[1] and line[j][1][0] >= i[1] and
- line[j][0][0] <= i[3] and line[j][1][0] <= i[3]):
- if score[j] > score_max:
- tmp = line[j]
- score_max = score[j]
- line_.append(tmp)
- score_.append(score_max)
- processed_list = torch.tensor(line_)
- pred[idx]['line'] = processed_list
- processed_s_list = torch.tensor(score_)
- pred[idx]['line_score'] = processed_s_list
- return pred
- # box内无线段时,选box内点组成线段最长的 两个点组成的线段返回
- def box_line1(imgs, pred, length=False): # 默认置信度
- im = imgs.permute(1, 2, 0).cpu().numpy()
- line_data = pred[-1]['wires']['lines'][0].cpu().numpy() / 128 * 512
- line_scores = pred[-1]['wires']['score'].cpu().numpy()[0]
- points=pred[-1]['wires']['juncs'].cpu().numpy()[0]/ 128 * 512
- diag = (im.shape[0] ** 2 + im.shape[1] ** 2) ** 0.5
- line, score = postprocess(line_data, line_scores, diag * 0.01, 0, False)
- for idx, box_ in enumerate(pred[0:-1]):
- box = box_['boxes'] # 是一个tensor
- line_ = []
- score_ = []
- for i in box:
- score_max = 0.0
- tmp = [[0.0, 0.0], [0.0, 0.0]]
- for j in range(len(line)):
- if (line[j][0][1] >= i[0] and line[j][1][1] >= i[0] and
- line[j][0][1] <= i[2] and line[j][1][1] <= i[2] and
- line[j][0][0] >= i[1] and line[j][1][0] >= i[1] and
- line[j][0][0] <= i[3] and line[j][1][0] <= i[3]):
- if score[j] > score_max:
- tmp = line[j]
- score_max = score[j]
- # 如果 box 内无线段,则通过点坐标找最长线段
- if score_max == 0.0: # 说明 box 内无线段
- box_points = [
- [x, y] for x, y in points
- if i[0] <= y <= i[2] and i[1] <= x <= i[3]
- ]
- if len(box_points) >= 2: # 至少需要两个点才能组成线段
- max_distance = 0.0
- longest_segment = [[0.0, 0.0], [0.0, 0.0]]
- # 找出 box 内点组成的最长线段
- for p1 in box_points:
- for p2 in box_points:
- if p1 != p2:
- distance = np.linalg.norm(np.array(p1) - np.array(p2))
- if distance > max_distance:
- max_distance = distance
- longest_segment = [p1, p2]
- tmp = longest_segment
- score_max = 0.0 # 默认分数为 0.0
- line_.append(tmp)
- score_.append(score_max)
- processed_list = torch.tensor(line_)
- pred[idx]['line'] = processed_list
- processed_s_list = torch.tensor(score_)
- pred[idx]['line_score'] = processed_s_list
- return pred
- def show_box(imgs, pred, t_start):
- col = [
- '#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c',
- '#98df8a', '#d62728', '#ff9896', '#9467bd', '#c5b0d5',
- '#8c564b', '#c49c94', '#e377c2', '#f7b6d2', '#7f7f7f',
- '#c7c7c7', '#bcbd22', '#dbdb8d', '#17becf', '#9edae5',
- '#8dd3c7', '#ffffb3', '#bebada', '#fb8072', '#80b1d3',
- '#fdb462', '#b3de69', '#fccde5', '#bc80bd', '#ccebc5',
- '#ffed6f', '#8da0cb', '#e78ac3', '#e5c494', '#b3b3b3',
- '#fdbf6f', '#ff7f00', '#cab2d6', '#637939', '#b5cf6b',
- '#cedb9c', '#8c6d31', '#e7969c', '#d6616b', '#7b4173',
- '#ad494a', '#843c39', '#dd8452', '#f7f7f7', '#cccccc',
- '#969696', '#525252', '#f7fcfd', '#e5f5f9', '#ccece6',
- '#99d8c9', '#66c2a4', '#2ca25f', '#008d4c', '#005a32',
- '#f7fcf0', '#e0f3db', '#ccebc5', '#a8ddb5', '#7bccc4',
- '#4eb3d3', '#2b8cbe', '#08589e', '#f7fcfd', '#e0ecf4',
- '#bfd3e6', '#9ebcda', '#8c96c6', '#8c6bb4', '#88419d',
- '#810f7c', '#4d004b', '#f7f7f7', '#efefef', '#d9d9d9',
- '#bfbfbf', '#969696', '#737373', '#525252', '#252525',
- '#000000', '#ffffff', '#ffeda0', '#fed976', '#feb24c',
- '#fd8d3c', '#fc4e2a', '#e31a1c', '#bd0026', '#800026',
- '#ff6f61', '#ff9e64', '#ff6347', '#ffa07a', '#fa8072'
- ]
- # print(len(col))
- im = imgs.permute(1, 2, 0)
- boxes = pred[0]['boxes'].cpu().numpy()
- box_scores = pred[0]['scores'].cpu().numpy()
- # 可视化预测结
- fig, ax = plt.subplots(figsize=(10, 10))
- ax.imshow(np.array(im))
- for idx, box in enumerate(boxes):
- # if box_scores[idx] < 0.7:
- # continue
- x0, y0, x1, y1 = box
- ax.add_patch(
- plt.Rectangle((x0, y0), x1 - x0, y1 - y0, fill=False, edgecolor=col[idx], linewidth=1))
- t_end = time.time()
- print(f'show_box used:{t_end - t_start}')
- plt.show()
- def show_predict(imgs, pred, t_start):
- col = [
- '#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c',
- '#98df8a', '#d62728', '#ff9896', '#9467bd', '#c5b0d5',
- '#8c564b', '#c49c94', '#e377c2', '#f7b6d2', '#7f7f7f',
- '#c7c7c7', '#bcbd22', '#dbdb8d', '#17becf', '#9edae5',
- '#8dd3c7', '#ffffb3', '#bebada', '#fb8072', '#80b1d3',
- '#fdb462', '#b3de69', '#fccde5', '#bc80bd', '#ccebc5',
- '#ffed6f', '#8da0cb', '#e78ac3', '#e5c494', '#b3b3b3',
- '#fdbf6f', '#ff7f00', '#cab2d6', '#637939', '#b5cf6b',
- '#cedb9c', '#8c6d31', '#e7969c', '#d6616b', '#7b4173',
- '#ad494a', '#843c39', '#dd8452', '#f7f7f7', '#cccccc',
- '#969696', '#525252', '#f7fcfd', '#e5f5f9', '#ccece6',
- '#99d8c9', '#66c2a4', '#2ca25f', '#008d4c', '#005a32',
- '#f7fcf0', '#e0f3db', '#ccebc5', '#a8ddb5', '#7bccc4',
- '#4eb3d3', '#2b8cbe', '#08589e', '#f7fcfd', '#e0ecf4',
- '#bfd3e6', '#9ebcda', '#8c96c6', '#8c6bb4', '#88419d',
- '#810f7c', '#4d004b', '#f7f7f7', '#efefef', '#d9d9d9',
- '#bfbfbf', '#969696', '#737373', '#525252', '#252525',
- '#000000', '#ffffff', '#ffeda0', '#fed976', '#feb24c',
- '#fd8d3c', '#fc4e2a', '#e31a1c', '#bd0026', '#800026',
- '#ff6f61', '#ff9e64', '#ff6347', '#ffa07a', '#fa8072'
- ]
- im = imgs.permute(1, 2, 0) # 处理为 [512, 512, 3]
- boxes = pred[0]['boxes'].cpu().numpy()
- box_scores = pred[0]['scores'].cpu().numpy()
- lines = pred[0]['line'].cpu().numpy()
- line_scores = pred[0]['line_score'].cpu().numpy()
- # 可视化预测结
- fig, ax = plt.subplots(figsize=(10, 10))
- ax.imshow(np.array(im))
- idx = 0
- tmp = np.array([[0.0, 0.0], [0.0, 0.0]])
- for box, line, box_score, line_score in zip(boxes, lines, box_scores, line_scores):
- x0, y0, x1, y1 = box
- # 框中无线的跳过
- if np.array_equal(line, tmp):
- continue
- a, b = line
- if box_score >= 0 or line_score >= 0:
- ax.add_patch(
- plt.Rectangle((x0, y0), x1 - x0, y1 - y0, fill=False, edgecolor=col[idx], linewidth=1))
- ax.scatter(a[1], a[0], c='#871F78', s=10)
- ax.scatter(b[1], b[0], c='#871F78', s=10)
- ax.plot([a[1], b[1]], [a[0], b[0]], c=col[idx], linewidth=1)
- idx = idx + 1
- t_end = time.time()
- print(f'predict used:{t_end - t_start}')
- plt.show()
- def show_line(imgs, pred, t_start):
- im = imgs.permute(1, 2, 0)
- line = pred[-1]['wires']['lines'][0].cpu().numpy() / 128 * 512
- # print(pred[-1]['wires']['score'])
- line_score = pred[-1]['wires']['score'].cpu().numpy()[0]
- t1 = time.time()
- print(f't1:{t1 - t_start}')
- diag = (im.shape[0] ** 2 + im.shape[1] ** 2) ** 0.5
- line, line_score = postprocess(line, line_score, diag * 0.01, 0, False)
- print(f'lines num:{len(line)}')
- t2 = time.time()
- print(f't1:{t2 - t1}')
- # 可视化预测结
- fig, ax = plt.subplots(figsize=(10, 10))
- ax.imshow(np.array(im))
- for idx, (a, b) in enumerate(line):
- # if line_score[idx] < 0.7:
- # continue
- ax.scatter(a[1], a[0], c='#871F78', s=2)
- ax.scatter(b[1], b[0], c='#871F78', s=2)
- ax.plot([a[1], b[1]], [a[0], b[0]], c='red', linewidth=1)
- t_end = time.time()
- print(f'show_line used:{t_end - t_start}')
- plt.show()
- def predict(pt_path, model, img):
- model = load_best_model(model, pt_path, device)
- model.eval()
- if isinstance(img, str):
- img = Image.open(img).convert("RGB")
- transform = transforms.ToTensor()
- img_tensor = transform(img) # [3, 512, 512]
- # 将图像调整为512x512大小
- t_start = time.time()
- im = img_tensor.permute(1, 2, 0) # [512, 512, 3]
- im_resized = skimage.transform.resize(im.cpu().numpy().astype(np.float32), (512, 512)) # (512, 512, 3)
- img_ = torch.tensor(im_resized).permute(2, 0, 1)
- t_end = time.time()
- print(f'switch img used:{t_end - t_start}')
- with torch.no_grad():
- predictions = model([img_.to(device)])
- print(predictions)
- t_end1 = time.time()
- print(f'model test used:{t_end1 - t_end}')
- # show_line_optimized(img_, predictions, t_start) # 只画线
- show_line(img_, predictions, t_end1)
- t_end2 = time.time()
- show_box(img_, predictions, t_end2) # 只画kuang
- # show_box_or_line(img_, predictions, show_line=True, show_box=True) # 参数确定画什么
- # show_box_and_line(img_, predictions, show_line=True, show_box=True) # 一起画 1x2 2张图
- t_start = time.time()
- pred = box_line_(img_, predictions)
- t_end = time.time()
- print(f'Matched boxes and lines used: {t_end - t_start:.4f} seconds')
- show_predict(img_, pred, t_start)
- if __name__ == '__main__':
- t_start = time.time()
- print(f'start to predict:{t_start}')
- model = linenet_resnet50_fpn().to(device)
- # pt_path = r"C:\Users\m2337\Downloads\best_lmap代替x,训练24轮结果.pth"
- # pt_path = r"C:\Users\m2337\Downloads\best_lmap代替x,训练75轮.pth"
- pt_path = r"C:\Users\m2337\Downloads\best_e150.pth"
- # pt_path = r"C:\Users\m2337\Downloads\best_e20.pth"
- img_path = r"C:\Users\m2337\Desktop\p\新建文件夹\2025-03-25-16-10-00_SaveLeftImage.png"
- predict(pt_path, model, img_path)
- t_end = time.time()
- print(f'predict used:{t_end - t_start}')
|