| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239 |
- import os
- import time
- from datetime import datetime
- import torch
- from torch.utils.tensorboard import SummaryWriter
- from models.base.base_model import BaseModel
- from models.base.base_trainer import BaseTrainer
- from models.config.config_tool import read_yaml
- from models.line_detect.dataset_LD import WirePointDataset
- from models.line_detect.postprocess import box_line_, show_
- from utils.log_util import show_line, save_last_model, save_best_model
- from tools import utils
- def _loss(losses):
- total_loss = 0
- for i in losses.keys():
- if i != "loss_wirepoint":
- total_loss += losses[i]
- else:
- loss_labels = losses[i]["losses"]
- loss_labels_k = list(loss_labels[0].keys())
- for j, name in enumerate(loss_labels_k):
- loss = loss_labels[0][name].mean()
- total_loss += loss
- return total_loss
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
- def move_to_device(data, device):
- if isinstance(data, (list, tuple)):
- return type(data)(move_to_device(item, device) for item in data)
- elif isinstance(data, dict):
- return {key: move_to_device(value, device) for key, value in data.items()}
- elif isinstance(data, torch.Tensor):
- return data.to(device)
- else:
- return data # 对于非张量类型的数据不做任何改变
- class Trainer(BaseTrainer):
- def __init__(self, model=None,
- dataset=None,
- device='cuda',
- freeze_config=None, # 新增:冻结参数配置
- **kwargs):
- super().__init__(model, dataset, device, **kwargs)
- self.freeze_config = freeze_config or {} # 默认冻结配置为空
- def move_to_device(self, data, device):
- if isinstance(data, (list, tuple)):
- return type(data)(self.move_to_device(item, device) for item in data)
- elif isinstance(data, dict):
- return {key: self.move_to_device(value, device) for key, value in data.items()}
- elif isinstance(data, torch.Tensor):
- return data.to(device)
- else:
- return data # 对于非张量类型的数据不做任何改变
- def freeze_params(self, model):
- """根据配置冻结模型参数"""
- default_config = {
- 'backbone': True, # 冻结 backbone
- 'rpn': False, # 不冻结 rpn
- 'roi_heads': {
- 'box_head': False,
- 'box_predictor': False,
- 'line_head': False,
- 'line_predictor': {
- 'fc1': False,
- 'fc2': {
- '0': False,
- '2': False,
- '4': False
- }
- }
- }
- }
- # 更新默认配置
- default_config.update(self.freeze_config)
- config = default_config
- print("\n===== Parameter Freezing Configuration =====")
- for name, module in model.named_children():
- if name in config:
- if isinstance(config[name], bool):
- for param in module.parameters():
- param.requires_grad = not config[name]
- print(f"{'Frozen' if config[name] else 'Trainable'} module: {name}")
- elif isinstance(config[name], dict):
- for subname, submodule in module.named_children():
- if subname in config[name]:
- if isinstance(config[name][subname], bool):
- for param in submodule.parameters():
- param.requires_grad = not config[name][subname]
- print(
- f"{'Frozen' if config[name][subname] else 'Trainable'} submodule: {name}.{subname}")
- elif isinstance(config[name][subname], dict):
- for subsubname, subsubmodule in submodule.named_children():
- if subsubname in config[name][subname]:
- for param in subsubmodule.parameters():
- param.requires_grad = not config[name][subname][subsubname]
- print(
- f"{'Frozen' if config[name][subname][subsubname] else 'Trainable'} sub-submodule: {name}.{subname}.{subsubname}")
- # 打印参数统计
- total_params = sum(p.numel() for p in model.parameters())
- trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
- print(f"\nTotal Parameters: {total_params:,}")
- print(f"Trainable Parameters: {trainable_params:,}")
- print(f"Frozen Parameters: {total_params - trainable_params:,}")
- def load_best_model(self, model, optimizer, save_path, device):
- if os.path.exists(save_path):
- checkpoint = torch.load(save_path, map_location=device)
- model.load_state_dict(checkpoint['model_state_dict'])
- if optimizer is not None:
- optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
- epoch = checkpoint['epoch']
- loss = checkpoint['loss']
- print(f"Loaded best model from {save_path} at epoch {epoch} with loss {loss:.4f}")
- else:
- print(f"No saved model found at {save_path}")
- return model, optimizer
- def writer_loss(self, writer, losses, epoch):
- try:
- for key, value in losses.items():
- if key == 'loss_wirepoint':
- for subdict in losses['loss_wirepoint']['losses']:
- for subkey, subvalue in subdict.items():
- writer.add_scalar(f'loss/{subkey}',
- subvalue.item() if hasattr(subvalue, 'item') else subvalue,
- epoch)
- elif isinstance(value, torch.Tensor):
- writer.add_scalar(f'loss/{key}', value.item(), epoch)
- except Exception as e:
- print(f"TensorBoard logging error: {e}")
- def train_cfg(self, model: BaseModel, cfg, freeze_config=None): # 新增:支持传入冻结配置
- cfg = read_yaml(cfg)
- self.freeze_config = freeze_config or {} # 更新冻结配置
- self.train(model, **cfg)
- def train(self, model, **kwargs):
- dataset_train = WirePointDataset(dataset_path=kwargs['io']['datadir'], dataset_type='train')
- train_sampler = torch.utils.data.RandomSampler(dataset_train)
- train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, batch_size=4, drop_last=True)
- train_collate_fn = utils.collate_fn_wirepoint
- data_loader_train = torch.utils.data.DataLoader(
- dataset_train, batch_sampler=train_batch_sampler, num_workers=1, collate_fn=train_collate_fn
- )
- dataset_val = WirePointDataset(dataset_path=kwargs['io']['datadir'], dataset_type='val')
- val_sampler = torch.utils.data.RandomSampler(dataset_val)
- val_batch_sampler = torch.utils.data.BatchSampler(val_sampler, batch_size=4, drop_last=True)
- val_collate_fn = utils.collate_fn_wirepoint
- data_loader_val = torch.utils.data.DataLoader(
- dataset_val, batch_sampler=val_batch_sampler, num_workers=1, collate_fn=val_collate_fn
- )
- train_result_ptath = os.path.join('train_results', datetime.now().strftime("%Y%m%d_%H%M%S"))
- wts_path = os.path.join(train_result_ptath, 'weights')
- tb_path = os.path.join(train_result_ptath, 'logs')
- writer = SummaryWriter(tb_path)
- model.to(device)
- # # 加载权重
- # save_path =r"F:\BaiduNetdiskDownload\r50fpn_wts_e350\best.pth"
- # model, _ = self.load_best_model(model, None, save_path, device)
- # 冻结参数
- # self.freeze_params(model)
- # 初始化优化器(仅训练未冻结参数)
- optimizer = torch.optim.Adam(
- filter(lambda p: p.requires_grad, model.parameters()),
- lr=kwargs['optim']['lr']
- )
- last_model_path = os.path.join(wts_path, 'last.pth')
- best_model_path = os.path.join(wts_path, 'best.pth')
- global_step = 0
- for epoch in range(kwargs['optim']['max_epoch']):
- print(f"epoch:{epoch}")
- total_train_loss = 0.0
- model.train()
- for imgs, targets in data_loader_train:
- imgs = move_to_device(imgs, device)
- targets = move_to_device(targets, device)
- losses = model(imgs, targets)
- loss = _loss(losses)
- total_train_loss += loss.item()
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
- self.writer_loss(writer, losses, global_step)
- global_step += 1
- avg_train_loss = total_train_loss / len(data_loader_train)
- if epoch == 0:
- best_loss = avg_train_loss
- writer.add_scalar('loss/train', avg_train_loss, epoch)
- if os.path.exists(f'{wts_path}/last.pt'):
- os.remove(f'{wts_path}/last.pt')
- save_last_model(model, last_model_path, epoch, optimizer)
- best_loss = save_best_model(model, best_model_path, epoch, avg_train_loss, best_loss, optimizer)
- model.eval()
- with torch.no_grad():
- for batch_idx, (imgs, targets) in enumerate(data_loader_val):
- t_start = time.time()
- print(f'start to predict:{t_start}')
- pred = model(self.move_to_device(imgs, self.device))
- # print(f'pred:{pred}')
- t_end = time.time()
- print(f'predict used:{t_end - t_start}')
- if batch_idx == 0:
- show_line(imgs[0], pred, epoch, writer)
- break
- import torch
- from models.line_detect.line_net import linenet_resnet50_fpn, LineNet, linenet_resnet18_fpn
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
- if __name__ == '__main__':
- # model = LineNet('line_net.yaml')
- model=linenet_resnet50_fpn()
- #model=linenet_resnet18_fpn()
- # trainer = Trainer()
- # trainer.train_cfg(model,cfg='./train.yaml')
- # model.train_by_cfg(cfg='train.yaml')
- trainer = Trainer()
- trainer.train_cfg(model=model, cfg='train.yaml')
|