| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- # import torch
- # from torchvision.utils import draw_bounding_boxes
- # from torchvision import transforms
- # import matplotlib.pyplot as plt
- # import numpy as np
- #
- #
- # def c(score):
- # # 根据分数返回颜色的函数,这里仅作示例,您可以根据需要修改
- # return (1, 0, 0) if score > 0.9 else (0, 1, 0)
- #
- #
- # def postprocess(lines, scores, diag_threshold, min_score, remove_overlaps):
- # # 假设的后处理函数,用于过滤线段
- # nlines = []
- # nscores = []
- # for line, score in zip(lines, scores):
- # if score >= min_score:
- # nlines.append(line)
- # nscores.append(score)
- # return np.array(nlines), np.array(nscores)
- #
- #
- # def show_line(img, pred, epoch, writer):
- # im = img.permute(1, 2, 0).cpu().numpy()
- #
- # # 绘制边界框
- # boxed_image = draw_bounding_boxes((img * 255).to(torch.uint8), pred[0]["boxes"],
- # colors="yellow", width=1).permute(1, 2, 0).cpu().numpy()
- #
- # H = pred[-1]['wires']
- # lines = H["lines"][0].cpu().numpy() / 128 * im.shape[:2]
- # scores = H["score"][0].cpu().numpy()
- #
- # print(f"Lines before deduplication: {len(lines)}")
- #
- # # 移除重复的线段
- # for i in range(1, len(lines)):
- # if (lines[i] == lines[0]).all():
- # lines = lines[:i]
- # scores = scores[:i]
- # break
- #
- # print(f"Lines after deduplication: {len(lines)}")
- #
- # # 后处理线段以移除重叠的线段
- # diag = (im.shape[0] ** 2 + im.shape[1] ** 2) ** 0.5
- # nlines, nscores = postprocess(lines, scores, diag * 0.01, 0, False)
- #
- # print(f"Lines after postprocessing: {len(nlines)}")
- #
- # # 创建一个新的图像并绘制线段和边界框
- # fig, ax = plt.subplots(figsize=(boxed_image.shape[1] / 100, boxed_image.shape[0] / 100))
- # ax.imshow(boxed_image)
- # ax.set_axis_off()
- # plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
- # plt.margins(0, 0)
- # plt.gca().xaxis.set_major_locator(plt.NullLocator())
- # plt.gca().yaxis.set_major_locator(plt.NullLocator())
- #
- # PLTOPTS = {"color": "#33FFFF", "s": 15, "edgecolors": "none", "zorder": 5}
- # for (a, b), s in zip(nlines, nscores):
- # if s < 0.85: # 调整阈值以筛选显示的线段
- # continue
- # plt.plot([a[1], b[1]], [a[0], b[0]], c=c(s), linewidth=2, zorder=s)
- # plt.scatter(a[1], a[0], **PLTOPTS)
- # plt.scatter(b[1], b[0], **PLTOPTS)
- #
- # plt.tight_layout()
- # fig.canvas.draw()
- # image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8).reshape(
- # fig.canvas.get_width_height()[::-1] + (3,))
- # plt.close()
- # img2 = transforms.ToTensor()(image_from_plot)
- #
- # writer.add_image("output_with_boxes_and_lines", img2, epoch)
- # print("Image with boxes and lines added to TensorBoard.")
- import numpy as np
- import matplotlib.pyplot as plt
- from scipy.ndimage import gaussian_filter
- import random
- # 假设我们有一些关键点位置
- keypoints = [(0, 0), (70, 80), (90, 30)]
- # 创建一个空白的热图
- heatmap = np.zeros((100, 100))
- # 将关键点位置添加到热图中
- for point in keypoints:
- y, x = point
- heatmap[y, x] = random.random()
- # heatmap[y, x] = 1 # 假设置信度为1
- print(heatmap)
- # 使用高斯滤波平滑热图
- heatmap_smooth = gaussian_filter(heatmap, sigma=1)
- print(heatmap_smooth)
|