| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200 |
- from torch.utils.data.dataset import T_co
- from libs.vision_libs.utils import draw_keypoints
- from models.base.base_dataset import BaseDataset
- import json
- import os
- import PIL
- import matplotlib as mpl
- from torchvision.utils import draw_bounding_boxes
- import torchvision.transforms.v2 as transforms
- import torch
- import matplotlib.pyplot as plt
- from models.base.transforms import get_transforms
- def validate_keypoints(keypoints, image_width, image_height):
- for kp in keypoints:
- x, y, v = kp
- if not (0 <= x < image_width and 0 <= y < image_height):
- raise ValueError(f"Key point ({x}, {y}) is out of bounds for image size ({image_width}, {image_height})")
- """
- 直接读取xanlabel标注的数据集json格式
- """
- class LineDataset(BaseDataset):
- def __init__(self, dataset_path, data_type, transforms=None,augmentation=False, dataset_type=None,img_type='rgb', target_type='pixel'):
- super().__init__(dataset_path)
- self.data_path = dataset_path
- self.data_type = data_type
- print(f'data_path:{dataset_path}')
- self.transforms = transforms
- self.img_path = os.path.join(dataset_path, "images/" + dataset_type)
- self.lbl_path = os.path.join(dataset_path, "labels/" + dataset_type)
- self.imgs = os.listdir(self.img_path)
- self.lbls = os.listdir(self.lbl_path)
- self.target_type = target_type
- self.img_type=img_type
- self.augmentation=augmentation
- print(f'augmentation:{augmentation}')
- # self.default_transform = DefaultTransform()
- def __getitem__(self, index) -> T_co:
- img_path = os.path.join(self.img_path, self.imgs[index])
- lbl_path = os.path.join(self.lbl_path, self.imgs[index][:-3] + 'json')
- img = PIL.Image.open(img_path).convert('RGB')
- w, h = img.size
- # wire_labels, target = self.read_target(item=index, lbl_path=lbl_path, shape=(h, w))
- target = self.read_target(item=index, lbl_path=lbl_path, shape=(h, w))
- self.transforms=get_transforms(augmention=self.augmentation)
- img, target = self.transforms(img, target)
- return img, target
- def __len__(self):
- return len(self.imgs)
- def read_target(self, item, lbl_path, shape, extra=None):
- # print(f'shape:{shape}')
- # print(f'lbl_path:{lbl_path}')
- with open(lbl_path, 'r') as file:
- lable_all = json.load(file)
- objs = lable_all["shapes"]
- point_pairs=objs[0]['points']
- # print(f'point_pairs:{point_pairs}')
- target = {}
- target["image_id"] = torch.tensor(item)
- target["boxes"], lines,target["points"], target["labels"] = get_boxes_lines(objs,shape)
- # print(f'lines:{lines}')
- # target["labels"] = torch.ones(len(target["boxes"]), dtype=torch.int64)
- # print(f'target points:{target["points"]}')
- a = torch.full((lines.shape[0],), 2).unsqueeze(1)
- lines = torch.cat((lines, a), dim=1)
- target["lines"] = lines.to(torch.float32).view(-1,2,3)
- print(f'lines:{target["lines"].shape}')
- target["img_size"]=shape
- validate_keypoints(lines, shape[0], shape[1])
- return target
- def show(self, idx,show_type='all'):
- image, target = self.__getitem__(idx)
- cmap = plt.get_cmap("jet")
- norm = mpl.colors.Normalize(vmin=0.4, vmax=1.0)
- sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
- sm.set_array([])
- # img_path = os.path.join(self.img_path, self.imgs[idx])
- # print(f'boxes:{target["boxes"]}')
- img = image
- if show_type=='all':
- boxed_image = draw_bounding_boxes((img * 255).to(torch.uint8), target["boxes"],
- colors="yellow", width=1)
- keypoint_img=draw_keypoints(boxed_image,target['points'].unsqueeze(1),colors='red',width=3)
- plt.imshow(keypoint_img.permute(1, 2, 0).numpy())
- plt.show()
- # if show_type=='lines':
- # keypoint_img=draw_keypoints((img * 255).to(torch.uint8),target['lines'],colors='red',width=3)
- # plt.imshow(keypoint_img.permute(1, 2, 0).numpy())
- # plt.show()
- if show_type=='points':
- print(f'points:{target['points'].shape}')
- keypoint_img=draw_keypoints((img * 255).to(torch.uint8),target['points'].unsqueeze(1),colors='red',width=3)
- plt.imshow(keypoint_img.permute(1, 2, 0).numpy())
- plt.show()
- if show_type=='boxes':
- boxed_image = draw_bounding_boxes((img * 255).to(torch.uint8), target["boxes"],
- colors="yellow", width=1)
- plt.imshow(boxed_image.permute(1, 2, 0).numpy())
- plt.show()
- def show_img(self, img_path):
- pass
- def get_boxes_lines(objs,shape):
- boxes = []
- labels=[]
- h,w=shape
- line_point_pairs = []
- points=[]
- for obj in objs:
- # plt.plot([a[1], b[1]], [a[0], b[0]], c="red", linewidth=1) # a[1], b[1]无明确大小
- # print(f"points:{obj['points']}")
- label=obj['label']
- if label =='line':
- a,b=obj['points'][0],obj['points'][1]
- line_point_pairs.append(a)
- line_point_pairs.append(b)
- xmin = max(0, (min(a[0], b[0]) - 6))
- xmax = min(w, (max(a[0], b[0]) + 6))
- ymin = max(0, (min(a[1], b[1]) - 6))
- ymax = min(h, (max(a[1], b[1]) + 6))
- boxes.append([ xmin,ymin, xmax,ymax])
- labels.append(torch.tensor(2))
- elif label =='point':
- p= obj['points'][0]
- xmin=max(0,p[0]-6)
- xmax = min(w, p[0] +6)
- ymin=max(0,p[1]-6)
- ymax = min(h, p[1] + 6)
- points.append(p)
- labels.append(torch.tensor(1))
- boxes.append([xmin, ymin, xmax, ymax])
- elif label =='arc':
- labels.append(torch.tensor(3))
- boxes=torch.tensor(boxes)
- print(f'boxes:{boxes.shape}')
- labels=torch.tensor(labels)
- points=torch.tensor(points)
- # print(f'read labels:{labels}')
- # print(f'read points:{points}')
- line_point_pairs=torch.tensor(line_point_pairs)
- # print(f'boxes:{boxes.shape},line_point_pairs:{line_point_pairs.shape}')
- return boxes,line_point_pairs,points,labels
- if __name__ == '__main__':
- path=r"\\192.168.50.222\share\rlq\datasets\Dataset0709_"
- dataset= LineDataset(dataset_path=path, dataset_type='train',augmentation=False, data_type='jpg')
- dataset.show(1,show_type='all')
|