line_detect.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402
  1. import os
  2. from typing import Any, Callable, List, Optional, Tuple, Union
  3. import torch
  4. from torch import nn
  5. from libs.vision_libs import ops
  6. from libs.vision_libs.models import MobileNet_V3_Large_Weights, mobilenet_v3_large, EfficientNet_V2_S_Weights, \
  7. efficientnet_v2_s, detection, EfficientNet_V2_L_Weights, efficientnet_v2_l, EfficientNet_V2_M_Weights, \
  8. efficientnet_v2_m
  9. from libs.vision_libs.models.detection.anchor_utils import AnchorGenerator
  10. from libs.vision_libs.models.detection.rpn import RPNHead, RegionProposalNetwork
  11. from libs.vision_libs.models.detection.ssdlite import _mobilenet_extractor
  12. from libs.vision_libs.models.detection.transform import GeneralizedRCNNTransform
  13. from libs.vision_libs.ops import misc as misc_nn_ops, MultiScaleRoIAlign
  14. from libs.vision_libs.transforms._presets import ObjectDetection
  15. from libs.vision_libs.models._api import register_model, Weights, WeightsEnum
  16. from libs.vision_libs.models._meta import _COCO_PERSON_CATEGORIES, _COCO_PERSON_KEYPOINT_NAMES, _COCO_CATEGORIES
  17. from libs.vision_libs.models._utils import _ovewrite_value_param, handle_legacy_interface
  18. from libs.vision_libs.models.resnet import resnet50, ResNet50_Weights, ResNet18_Weights, resnet18
  19. from libs.vision_libs.models.detection._utils import overwrite_eps
  20. from libs.vision_libs.models.detection.backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers, \
  21. BackboneWithFPN, resnet_fpn_backbone
  22. from libs.vision_libs.models.detection.faster_rcnn import FasterRCNN, TwoMLPHead, FastRCNNPredictor
  23. from .loi_heads import RoIHeads
  24. from .trainer import Trainer
  25. from ..base import backbone_factory
  26. from ..base.backbone_factory import get_convnext_fpn, get_anchor_generator
  27. # from ..base.backbone_factory import get_convnext_fpn, get_anchor_generator
  28. from ..base.base_detection_net import BaseDetectionNet
  29. import torch.nn.functional as F
  30. from ..base.high_reso_resnet import resnet50fpn, resnet18fpn
  31. __all__ = [
  32. "LineDetect",
  33. "linedetect_resnet50_fpn",
  34. ]
  35. def _default_anchorgen():
  36. anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
  37. aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
  38. return AnchorGenerator(anchor_sizes, aspect_ratios)
  39. class LineDetect(BaseDetectionNet):
  40. def __init__(
  41. self,
  42. backbone,
  43. num_classes=None,
  44. # transform parameters
  45. min_size=512,
  46. max_size=2048,
  47. image_mean=None,
  48. image_std=None,
  49. # RPN parameters
  50. rpn_anchor_generator=None,
  51. rpn_head=None,
  52. rpn_pre_nms_top_n_train=2000,
  53. rpn_pre_nms_top_n_test=1000,
  54. rpn_post_nms_top_n_train=2000,
  55. rpn_post_nms_top_n_test=1000,
  56. rpn_nms_thresh=0.7,
  57. rpn_fg_iou_thresh=0.7,
  58. rpn_bg_iou_thresh=0.3,
  59. rpn_batch_size_per_image=256,
  60. rpn_positive_fraction=0.5,
  61. rpn_score_thresh=0.0,
  62. # Box parameters
  63. box_roi_pool=None,
  64. box_head=None,
  65. box_predictor=None,
  66. box_score_thresh=0.05,
  67. box_nms_thresh=0.5,
  68. box_detections_per_img=100,
  69. box_fg_iou_thresh=0.5,
  70. box_bg_iou_thresh=0.5,
  71. box_batch_size_per_image=512,
  72. box_positive_fraction=0.25,
  73. bbox_reg_weights=None,
  74. # keypoint parameters
  75. line_roi_pool=None,
  76. line_head=None,
  77. line_predictor=None,
  78. num_keypoints=None,
  79. **kwargs,
  80. ):
  81. out_channels = backbone.out_channels
  82. if rpn_anchor_generator is None:
  83. rpn_anchor_generator = _default_anchorgen()
  84. if rpn_head is None:
  85. rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
  86. rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
  87. rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)
  88. rpn = RegionProposalNetwork(
  89. rpn_anchor_generator,
  90. rpn_head,
  91. rpn_fg_iou_thresh,
  92. rpn_bg_iou_thresh,
  93. rpn_batch_size_per_image,
  94. rpn_positive_fraction,
  95. rpn_pre_nms_top_n,
  96. rpn_post_nms_top_n,
  97. rpn_nms_thresh,
  98. score_thresh=rpn_score_thresh,
  99. )
  100. if box_roi_pool is None:
  101. box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2)
  102. if box_head is None:
  103. resolution = box_roi_pool.output_size[0]
  104. representation_size = 1024
  105. box_head = TwoMLPHead(out_channels * resolution**2, representation_size)
  106. if box_predictor is None:
  107. representation_size = 1024
  108. box_predictor = ObjectionPredictor(representation_size, num_classes)
  109. roi_heads = RoIHeads(
  110. # Box
  111. box_roi_pool,
  112. box_head,
  113. box_predictor,
  114. box_fg_iou_thresh,
  115. box_bg_iou_thresh,
  116. box_batch_size_per_image,
  117. box_positive_fraction,
  118. bbox_reg_weights,
  119. box_score_thresh,
  120. box_nms_thresh,
  121. box_detections_per_img,
  122. )
  123. if image_mean is None:
  124. image_mean = [0.485, 0.456, 0.406]
  125. if image_std is None:
  126. image_std = [0.229, 0.224, 0.225]
  127. transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std, **kwargs)
  128. super().__init__(backbone, rpn, roi_heads, transform)
  129. if not isinstance(line_roi_pool, (MultiScaleRoIAlign, type(None))):
  130. raise TypeError(
  131. "keypoint_roi_pool should be of type MultiScaleRoIAlign or None instead of {type(keypoint_roi_pool)}"
  132. )
  133. if min_size is None:
  134. min_size = (640, 672, 704, 736, 768, 800)
  135. if num_keypoints is not None:
  136. if line_predictor is not None:
  137. raise ValueError("num_keypoints should be None when keypoint_predictor is specified")
  138. else:
  139. num_keypoints = 2
  140. if line_roi_pool is None:
  141. line_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=14, sampling_ratio=2)
  142. if line_head is None:
  143. keypoint_layers = tuple(1 for _ in range(8))
  144. line_head = LineHeads(16, keypoint_layers)
  145. if line_predictor is None:
  146. keypoint_dim_reduced = 512 # == keypoint_layers[-1]
  147. line_predictor = LinePredictor(keypoint_dim_reduced)
  148. self.roi_heads.line_roi_pool = line_roi_pool
  149. self.roi_heads.line_head = line_head
  150. self.roi_heads.line_predictor = line_predictor
  151. def start_train(self, cfg):
  152. # cfg = read_yaml(cfg)
  153. self.trainer = Trainer()
  154. self.trainer.train_from_cfg(model=self, cfg=cfg)
  155. def load_weights(self, save_path, device='cuda'):
  156. if os.path.exists(save_path):
  157. checkpoint = torch.load(save_path, map_location=device)
  158. self.load_state_dict(checkpoint['model_state_dict'])
  159. # if optimizer is not None:
  160. # optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
  161. # epoch = checkpoint['epoch']
  162. # loss = checkpoint['loss']
  163. # print(f"Loaded best model from {save_path} at epoch {epoch} with loss {loss:.4f}")
  164. print(f"Loaded model from {save_path}")
  165. else:
  166. print(f"No saved model found at {save_path}")
  167. return self
  168. class TwoMLPHead(nn.Module):
  169. """
  170. Standard heads for FPN-based models
  171. Args:
  172. in_channels (int): number of input channels
  173. representation_size (int): size of the intermediate representation
  174. """
  175. def __init__(self, in_channels, representation_size):
  176. super().__init__()
  177. self.fc6 = nn.Linear(in_channels, representation_size)
  178. self.fc7 = nn.Linear(representation_size, representation_size)
  179. def forward(self, x):
  180. x = x.flatten(start_dim=1)
  181. x = F.relu(self.fc6(x))
  182. x = F.relu(self.fc7(x))
  183. return x
  184. class ObjectionConvFCHead(nn.Sequential):
  185. def __init__(
  186. self,
  187. input_size: Tuple[int, int, int],
  188. conv_layers: List[int],
  189. fc_layers: List[int],
  190. norm_layer: Optional[Callable[..., nn.Module]] = None,
  191. ):
  192. """
  193. Args:
  194. input_size (Tuple[int, int, int]): the input size in CHW format.
  195. conv_layers (list): feature dimensions of each Convolution layer
  196. fc_layers (list): feature dimensions of each FCN layer
  197. norm_layer (callable, optional): Module specifying the normalization layer to use. Default: None
  198. """
  199. in_channels, in_height, in_width = input_size
  200. blocks = []
  201. previous_channels = in_channels
  202. for current_channels in conv_layers:
  203. blocks.append(misc_nn_ops.Conv2dNormActivation(previous_channels, current_channels, norm_layer=norm_layer))
  204. previous_channels = current_channels
  205. blocks.append(nn.Flatten())
  206. previous_channels = previous_channels * in_height * in_width
  207. for current_channels in fc_layers:
  208. blocks.append(nn.Linear(previous_channels, current_channels))
  209. blocks.append(nn.ReLU(inplace=True))
  210. previous_channels = current_channels
  211. super().__init__(*blocks)
  212. for layer in self.modules():
  213. if isinstance(layer, nn.Conv2d):
  214. nn.init.kaiming_normal_(layer.weight, mode="fan_out", nonlinearity="relu")
  215. if layer.bias is not None:
  216. nn.init.zeros_(layer.bias)
  217. class ObjectionPredictor(nn.Module):
  218. """
  219. Standard classification + bounding box regression layers
  220. for Fast R-CNN.
  221. Args:
  222. in_channels (int): number of input channels
  223. num_classes (int): number of output classes (including background)
  224. """
  225. def __init__(self, in_channels, num_classes):
  226. super().__init__()
  227. self.cls_score = nn.Linear(in_channels, num_classes)
  228. self.bbox_pred = nn.Linear(in_channels, num_classes * 4)
  229. def forward(self, x):
  230. if x.dim() == 4:
  231. torch._assert(
  232. list(x.shape[2:]) == [1, 1],
  233. f"x has the wrong shape, expecting the last two dimensions to be [1,1] instead of {list(x.shape[2:])}",
  234. )
  235. x = x.flatten(start_dim=1)
  236. scores = self.cls_score(x)
  237. bbox_deltas = self.bbox_pred(x)
  238. return scores, bbox_deltas
  239. class LineHeads(nn.Sequential):
  240. def __init__(self, in_channels, layers):
  241. d = []
  242. next_feature = in_channels
  243. for out_channels in layers:
  244. d.append(nn.Conv2d(next_feature, out_channels, 3, stride=1, padding=1))
  245. d.append(nn.ReLU(inplace=True))
  246. next_feature = out_channels
  247. super().__init__(*d)
  248. for m in self.children():
  249. if isinstance(m, nn.Conv2d):
  250. nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
  251. nn.init.constant_(m.bias, 0)
  252. class LinePredictor(nn.Module):
  253. def __init__(self, in_channels, out_channels=1 ):
  254. super().__init__()
  255. input_features = in_channels
  256. deconv_kernel = 4
  257. self.kps_score_lowres = nn.ConvTranspose2d(
  258. input_features,
  259. out_channels,
  260. deconv_kernel,
  261. stride=2,
  262. padding=deconv_kernel // 2 - 1,
  263. )
  264. nn.init.kaiming_normal_(self.kps_score_lowres.weight, mode="fan_out", nonlinearity="relu")
  265. nn.init.constant_(self.kps_score_lowres.bias, 0)
  266. self.up_scale = 2
  267. self.out_channels = out_channels
  268. def forward(self, x):
  269. print(f'before kps_score_lowres x:{x.shape}')
  270. x = self.kps_score_lowres(x)
  271. print(f'kps_score_lowres x:{x.shape}')
  272. return torch.nn.functional.interpolate(
  273. x, scale_factor=float(self.up_scale), mode="bilinear", align_corners=False, recompute_scale_factor=False
  274. )
  275. def linedetect_newresnet18fpn(
  276. *,
  277. num_classes: Optional[int] = None,
  278. num_points:Optional[int] = None,
  279. **kwargs: Any,
  280. ) -> LineDetect:
  281. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  282. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  283. if num_classes is None:
  284. num_classes = 2
  285. if num_points is None:
  286. num_points = 2
  287. backbone =resnet18fpn()
  288. featmap_names=['0', '1', '2', '3','pool']
  289. # print(f'featmap_names:{featmap_names}')
  290. roi_pooler = MultiScaleRoIAlign(
  291. featmap_names=featmap_names,
  292. output_size=7,
  293. sampling_ratio=2
  294. )
  295. num_features=len(featmap_names)
  296. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  297. # print(f'anchor_sizes:{anchor_sizes}')
  298. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  299. # print(f'aspect_ratios:{aspect_ratios}')
  300. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  301. model = LineDetect(backbone, num_classes, num_keypoints=num_points,rpn_anchor_generator=anchor_generator,box_roi_pool=roi_pooler, **kwargs)
  302. return model
  303. def linedetect_resnet18_fpn(
  304. *,
  305. num_classes: Optional[int] = None,
  306. num_points: Optional[int] = None,
  307. **kwargs: Any,
  308. ) -> LineDetect:
  309. if num_classes is None:
  310. num_classes = 2
  311. if num_points is None:
  312. num_points = 2
  313. backbone = resnet_fpn_backbone(backbone_name='resnet18',weights=None)
  314. model = LineDetect(backbone, num_classes, num_keypoints=num_points, **kwargs)
  315. return model
  316. def linedetect_resnet50_fpn(
  317. *,
  318. num_classes: Optional[int] = None,
  319. num_points: Optional[int] = None,
  320. **kwargs: Any,
  321. ) -> LineDetect:
  322. if num_classes is None:
  323. num_classes = 2
  324. if num_points is None:
  325. num_points = 2
  326. backbone = resnet_fpn_backbone(backbone_name='resnet18', weights=None)
  327. model = LineDetect(backbone, num_classes, num_keypoints=num_points, **kwargs)
  328. return model