| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 |
- import cv2
- import numpy as np
- import imageio
- import open3d as o3d
- from tifffile import tifffile
- # 相机内参矩阵 [fx, 0, cx; 0, fy, cy; 0, 0, 1]
- K = np.array([
- [1.30449e3, 0, 5.2602e2],
- [0, 1.30449e3, 1.07432e3],
- [0, 0, 1]
- ])
- fx, fy = K[0, 0], K[1, 1]
- cx, cy = K[0, 2], K[1, 2]
- def pointscloud2depthmap(points):
- # 初始化一个空的目标数组
- point_image = np.zeros((height, width, 3), dtype=np.float32)
- # 遍历点云中的每个点,进行投影并填充目标数组
- for point in points:
- X, Y, Z ,r,g,b= point
- if Z > 0: # 确保Z值有效
- # 计算2D图像坐标
- u = int((X * fx) / Z + cx)
- v = int((Y * fy) / Z + cy)
- # 检查是否在图像边界内
- if 0 <= u < width and 0 <= v < height:
- point_image[v, u, :] = (X,Y,Z)
- return point_image
- def pointscloud2colorimg(points):
- # 初始化一个空的目标数组
- point_image = np.zeros((height, width, 3), dtype=np.float32)
- color_image = np.zeros((height, width, 3), dtype=np.float32)
- # 遍历点云中的每个点,进行投影并填充目标数组
- for point in points:
- X, Y, Z ,r,g,b= point
- if Z > 0: # 确保Z值有效
- # 计算2D图像坐标
- u = int((X * fx) / Z + cx)
- v = int((Y * fy) / Z + cy)
- # 检查是否在图像边界内
- if 0 <= u < width and 0 <= v < height:
- # point_image[v, u, :] = point
- color_image[v,u]=[r*255,g*255,b*255]
- return color_image
- # # 使用imageio读取
- # loaded_depth_map = imageio.v3.imread(r"depth_map.tiff")
- # print(loaded_depth_map.shape)
- # print(loaded_depth_map.dtype)
- # # print(loaded_depth_map)
- # 加载PCD文件
- pcd = o3d.io.read_point_cloud(r"F:\test_pointcloud\color2.pcd")
- # 打印点的数量
- print("Number of points:", len(pcd.points))
- # 获取点云数据
- points = np.asarray(pcd.points)
- colors=np.asarray(pcd.colors)
- points = np.hstack((points, colors)) # (N, 6)
- # 打印前5个点的坐标
- print("First 5 points:\n", points[:5])
- print(f'color:{colors}')
- #
- # print(f'depth :{loaded_depth_map[0,0:5]}')
- #
- #
- # print(loaded_depth_map[102,113])
- #
- # # 将深度图转换为点云
- # height ,width = loaded_depth_map.shape[:2]
- # print(f'height:{height},width:{width}')
- # point_cloud_from_depth = []
- # for v in range(height):
- # for u in range(width):
- # x_,y_,z_=loaded_depth_map[v,u]
- # print(f'x_,y_,z_:({x_},{y_},{z_})')
- # depth = loaded_depth_map[v, u][-1]
- # print(f'depth:{depth}')
- # # if depth > 0: # 忽略无效的深度值
- # x = (u - cx) * depth / fx
- # y = (v - cy) * depth / fy
- # z = depth
- # print(f'x,y,z:({x},{y},{z})')
- # point_cloud_from_depth.append([x, y, z])
- #
- # point_cloud_from_depth = np.array(point_cloud_from_depth)
- #
- # # 打印从深度图生成的点云中的前5个点
- # print("First 5 points from depth map:\n", point_cloud_from_depth[:5])
- # 目标深度图尺寸
- height, width = 2000, 2000
- # point_image=pointscloud2depthmap(points)
- point_image=pointscloud2colorimg(points)
- # 打印结果以验证
- print("Shape of the projected point cloud:", point_image.shape)
- print("First few pixels (if any):", point_image[:5, :5, :])
- # 提取 Z 值作为深度图
- depth_map = point_image[:, :, 2]
- # depth_map=point_image
- # 处理无效点(例如,设置无效点的深度值为一个极大值)
- # invalid_depth_value = np.max(depth_map) * 2 # 或者选择其他合适的值
- # depth_map[depth_map == 0] = invalid_depth_value # 将所有无效点(Z=0)替换为极大值
- # 打印深度图的一些信息以验证
- print("Depth map shape:", depth_map.shape)
- print("Depth map dtype:", depth_map.dtype)
- print("Min depth value:", np.min(depth_map))
- print("Max depth value:", np.max(depth_map))
- # 保存为 TIFF 文件
- # output_tiff_path = 'depth_map.tiff'
- color_img_path='color_img.jpg'
- # tifffile.imwrite(output_tiff_path, depth_map.astype(np.float16))
- cv2.imwrite(color_img_path,point_image)
- # print(f"Depth map saved to {output_tiff_path}")
|