trainer.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319
  1. import os
  2. import time
  3. from datetime import datetime
  4. import numpy as np
  5. import torch
  6. from matplotlib import pyplot as plt
  7. from torch.utils.tensorboard import SummaryWriter
  8. from libs.vision_libs.utils import draw_bounding_boxes, draw_keypoints
  9. from models.base.base_model import BaseModel
  10. from models.base.base_trainer import BaseTrainer
  11. from models.config.config_tool import read_yaml
  12. from models.line_detect.line_dataset import LineDataset
  13. from models.line_net.dataset_LD import WirePointDataset
  14. from models.wirenet.postprocess import postprocess
  15. from tools import utils
  16. from torchvision import transforms
  17. import matplotlib as mpl
  18. cmap = plt.get_cmap("jet")
  19. norm = mpl.colors.Normalize(vmin=0.4, vmax=1.0)
  20. sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
  21. sm.set_array([])
  22. def _loss(losses):
  23. total_loss = 0
  24. for i in losses.keys():
  25. if i != "loss_wirepoint":
  26. total_loss += losses[i]
  27. else:
  28. loss_labels = losses[i]["losses"]
  29. loss_labels_k = list(loss_labels[0].keys())
  30. for j, name in enumerate(loss_labels_k):
  31. loss = loss_labels[0][name].mean()
  32. total_loss += loss
  33. return total_loss
  34. def c(x):
  35. return sm.to_rgba(x)
  36. device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
  37. class Trainer(BaseTrainer):
  38. def __init__(self, model=None, **kwargs):
  39. super().__init__(model, device, **kwargs)
  40. self.model = model
  41. # print(f'kwargs:{kwargs}')
  42. self.init_params(**kwargs)
  43. def init_params(self, **kwargs):
  44. if kwargs != {}:
  45. print(f'train_params:{kwargs["train_params"]}')
  46. self.freeze_config = kwargs['train_params']['freeze_params']
  47. print(f'freeze_config:{self.freeze_config}')
  48. self.dataset_path = kwargs['io']['datadir']
  49. self.batch_size = kwargs['train_params']['batch_size']
  50. self.num_workers = kwargs['train_params']['num_workers']
  51. self.logdir = kwargs['io']['logdir']
  52. self.resume_from = kwargs['train_params']['resume_from']
  53. self.optim = ''
  54. self.train_result_ptath = os.path.join(self.logdir, datetime.now().strftime("%Y%m%d_%H%M%S"))
  55. self.wts_path = os.path.join(self.train_result_ptath, 'weights')
  56. self.tb_path = os.path.join(self.train_result_ptath, 'logs')
  57. self.writer = SummaryWriter(self.tb_path)
  58. self.last_model_path = os.path.join(self.wts_path, 'last.pth')
  59. self.best_train_model_path = os.path.join(self.wts_path, 'best_train.pth')
  60. self.best_val_model_path = os.path.join(self.wts_path, 'best_val.pth')
  61. self.max_epoch = kwargs['train_params']['max_epoch']
  62. def move_to_device(self, data, device):
  63. if isinstance(data, (list, tuple)):
  64. return type(data)(self.move_to_device(item, device) for item in data)
  65. elif isinstance(data, dict):
  66. return {key: self.move_to_device(value, device) for key, value in data.items()}
  67. elif isinstance(data, torch.Tensor):
  68. return data.to(device)
  69. else:
  70. return data # 对于非张量类型的数据不做任何改变
  71. def freeze_params(self, model):
  72. """根据配置冻结模型参数"""
  73. default_config = {
  74. 'backbone': True, # 冻结 backbone
  75. 'rpn': False, # 不冻结 rpn
  76. 'roi_heads': {
  77. 'box_head': False,
  78. 'box_predictor': False,
  79. 'line_head': False,
  80. 'line_predictor': {
  81. 'fc1': False,
  82. 'fc2': {
  83. '0': False,
  84. '2': False,
  85. '4': False
  86. }
  87. }
  88. }
  89. }
  90. # 更新默认配置
  91. default_config.update(self.freeze_config)
  92. config = default_config
  93. print("\n===== Parameter Freezing Configuration =====")
  94. for name, module in model.named_children():
  95. if name in config:
  96. if isinstance(config[name], bool):
  97. for param in module.parameters():
  98. param.requires_grad = not config[name]
  99. print(f"{'Frozen' if config[name] else 'Trainable'} module: {name}")
  100. elif isinstance(config[name], dict):
  101. for subname, submodule in module.named_children():
  102. if subname in config[name]:
  103. if isinstance(config[name][subname], bool):
  104. for param in submodule.parameters():
  105. param.requires_grad = not config[name][subname]
  106. print(
  107. f"{'Frozen' if config[name][subname] else 'Trainable'} submodule: {name}.{subname}")
  108. elif isinstance(config[name][subname], dict):
  109. for subsubname, subsubmodule in submodule.named_children():
  110. if subsubname in config[name][subname]:
  111. for param in subsubmodule.parameters():
  112. param.requires_grad = not config[name][subname][subsubname]
  113. print(
  114. f"{'Frozen' if config[name][subname][subsubname] else 'Trainable'} sub-submodule: {name}.{subname}.{subsubname}")
  115. # 打印参数统计
  116. total_params = sum(p.numel() for p in model.parameters())
  117. trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
  118. print(f"\nTotal Parameters: {total_params:,}")
  119. print(f"Trainable Parameters: {trainable_params:,}")
  120. print(f"Frozen Parameters: {total_params - trainable_params:,}")
  121. def load_best_model(self, model, optimizer, save_path, device):
  122. if os.path.exists(save_path):
  123. checkpoint = torch.load(save_path, map_location=device)
  124. model.load_state_dict(checkpoint['model_state_dict'])
  125. if optimizer is not None:
  126. optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
  127. epoch = checkpoint['epoch']
  128. loss = checkpoint['loss']
  129. print(f"Loaded best model from {save_path} at epoch {epoch} with loss {loss:.4f}")
  130. else:
  131. print(f"No saved model found at {save_path}")
  132. return model, optimizer
  133. def writer_predict_result(self, img, result, epoch):
  134. img = img.cpu().detach()
  135. im = img.permute(1, 2, 0) # [512, 512, 3]
  136. self.writer.add_image("ori", im, epoch, dataformats="HWC")
  137. boxed_image = draw_bounding_boxes((img * 255).to(torch.uint8), result["boxes"],
  138. colors="yellow", width=1)
  139. # plt.imshow(boxed_image.permute(1, 2, 0).detach().cpu().numpy())
  140. # plt.show()
  141. self.writer.add_image("boxes", boxed_image.permute(1, 2, 0), epoch, dataformats="HWC")
  142. keypoint_img = draw_keypoints(boxed_image, result['keypoints'], colors='red', width=3)
  143. self.writer.add_image("output", keypoint_img, epoch)
  144. def writer_loss(self, losses, epoch, phase='train'):
  145. try:
  146. for key, value in losses.items():
  147. if key == 'loss_wirepoint':
  148. for subdict in losses['loss_wirepoint']['losses']:
  149. for subkey, subvalue in subdict.items():
  150. self.writer.add_scalar(f'{phase}/loss/{subkey}',
  151. subvalue.item() if hasattr(subvalue, 'item') else subvalue,
  152. epoch)
  153. elif isinstance(value, torch.Tensor):
  154. self.writer.add_scalar(f'{phase}/loss/{key}', value.item(), epoch)
  155. except Exception as e:
  156. print(f"TensorBoard logging error: {e}")
  157. def train_from_cfg(self, model: BaseModel, cfg, freeze_config=None): # 新增:支持传入冻结配置
  158. cfg = read_yaml(cfg)
  159. # print(f'cfg:{cfg}')
  160. # self.freeze_config = freeze_config or {} # 更新冻结配置
  161. self.train(model, **cfg)
  162. def train(self, model, **kwargs):
  163. self.init_params(**kwargs)
  164. dataset_train = LineDataset(dataset_path=self.dataset_path, dataset_type='train')
  165. dataset_val = LineDataset(dataset_path=self.dataset_path, dataset_type='val')
  166. train_sampler = torch.utils.data.RandomSampler(dataset_train)
  167. val_sampler = torch.utils.data.RandomSampler(dataset_val)
  168. train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, batch_size=self.batch_size, drop_last=True)
  169. val_batch_sampler = torch.utils.data.BatchSampler(val_sampler, batch_size=self.batch_size, drop_last=True)
  170. train_collate_fn = utils.collate_fn
  171. val_collate_fn = utils.collate_fn
  172. data_loader_train = torch.utils.data.DataLoader(
  173. dataset_train, batch_sampler=train_batch_sampler, num_workers=self.num_workers, collate_fn=train_collate_fn
  174. )
  175. data_loader_val = torch.utils.data.DataLoader(
  176. dataset_val, batch_sampler=val_batch_sampler, num_workers=self.num_workers, collate_fn=val_collate_fn
  177. )
  178. model.to(device)
  179. optimizer = torch.optim.Adam(
  180. filter(lambda p: p.requires_grad, model.parameters()),
  181. lr=kwargs['train_params']['optim']['lr']
  182. )
  183. for epoch in range(self.max_epoch):
  184. print(f"train epoch:{epoch}")
  185. model, epoch_train_loss = self.one_epoch(model, data_loader_train, epoch, optimizer)
  186. # ========== Validation ==========
  187. with torch.no_grad():
  188. model, epoch_val_loss = self.one_epoch(model, data_loader_val, epoch, optimizer, phase='val')
  189. if epoch==0:
  190. best_train_loss = epoch_train_loss
  191. best_val_loss = epoch_val_loss
  192. self.save_last_model(model,self.last_model_path, epoch, optimizer)
  193. best_train_loss = self.save_best_model(model, self.best_train_model_path, epoch, epoch_train_loss,
  194. best_train_loss,
  195. optimizer)
  196. best_val_loss = self.save_best_model(model, self.best_val_model_path, epoch, epoch_val_loss, best_val_loss,
  197. optimizer)
  198. def one_epoch(self, model, data_loader, epoch, optimizer, phase='train'):
  199. if phase == 'train':
  200. model.train()
  201. if phase == 'val':
  202. model.eval()
  203. total_loss = 0
  204. epoch_step = 0
  205. global_step = epoch * len(data_loader)
  206. for imgs, targets in data_loader:
  207. imgs = self.move_to_device(imgs, device)
  208. targets = self.move_to_device(targets, device)
  209. if phase== 'val':
  210. result,loss_dict = model(imgs, targets)
  211. losses = sum(loss_dict.values()) if loss_dict else torch.tensor(0.0, device=device)
  212. print(f'val losses:{losses}')
  213. else:
  214. loss_dict = model(imgs, targets)
  215. losses = sum(loss_dict.values()) if loss_dict else torch.tensor(0.0, device=device)
  216. print(f'train losses:{losses}')
  217. # loss = _loss(losses)
  218. loss=losses
  219. total_loss += loss.item()
  220. if phase == 'train':
  221. optimizer.zero_grad()
  222. loss.backward()
  223. optimizer.step()
  224. self.writer_loss(loss_dict, global_step, phase=phase)
  225. global_step += 1
  226. if epoch_step == 0 and phase == 'val':
  227. t_start = time.time()
  228. print(f'start to predict:{t_start}')
  229. result = model(self.move_to_device(imgs, self.device))
  230. print(f'result:{result}')
  231. t_end = time.time()
  232. print(f'predict used:{t_end - t_start}')
  233. self.writer_predict_result(img=imgs[0], result=result[0], epoch=epoch)
  234. epoch_step+=1
  235. avg_loss = total_loss / len(data_loader)
  236. print(f'{phase}/loss epoch{epoch}:{avg_loss:4f}')
  237. self.writer.add_scalar(f'loss/{phase}', avg_loss, epoch)
  238. return model, avg_loss
  239. def save_best_model(self, model, save_path, epoch, current_loss, best_loss, optimizer=None):
  240. os.makedirs(os.path.dirname(save_path), exist_ok=True)
  241. if current_loss <= best_loss:
  242. checkpoint = {
  243. 'epoch': epoch,
  244. 'model_state_dict': model.state_dict(),
  245. 'loss': current_loss
  246. }
  247. if optimizer is not None:
  248. checkpoint['optimizer_state_dict'] = optimizer.state_dict()
  249. torch.save(checkpoint, save_path)
  250. print(f"Saved best model at epoch {epoch} with loss {current_loss:.4f}")
  251. return current_loss
  252. return best_loss
  253. def save_last_model(self, model, save_path, epoch, optimizer=None):
  254. if os.path.exists(f'{self.wts_path}/last.pt'):
  255. os.remove(f'{self.wts_path}/last.pt')
  256. os.makedirs(os.path.dirname(save_path), exist_ok=True)
  257. checkpoint = {
  258. 'epoch': epoch,
  259. 'model_state_dict': model.state_dict(),
  260. }
  261. if optimizer is not None:
  262. checkpoint['optimizer_state_dict'] = optimizer.state_dict()
  263. torch.save(checkpoint, save_path)
  264. if __name__ == '__main__':
  265. print('')