roi_heads.py 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938
  1. from typing import Dict, List, Optional, Tuple
  2. import torch
  3. import torch.nn.functional as F
  4. import torchvision
  5. from torch import nn, Tensor
  6. from libs.vision_libs.ops import boxes as box_ops, roi_align
  7. import libs.vision_libs.models.detection._utils as det_utils
  8. from collections import OrderedDict
  9. def fastrcnn_loss(class_logits, box_regression, labels, regression_targets):
  10. # type: (Tensor, Tensor, List[Tensor], List[Tensor]) -> Tuple[Tensor, Tensor]
  11. """
  12. Computes the loss for Faster R-CNN.
  13. Args:
  14. class_logits (Tensor)
  15. box_regression (Tensor)
  16. labels (list[BoxList])
  17. regression_targets (Tensor)
  18. Returns:
  19. classification_loss (Tensor)
  20. box_loss (Tensor)
  21. """
  22. # print(f'compute fastrcnn_loss:{labels}')
  23. labels = torch.cat(labels, dim=0)
  24. regression_targets = torch.cat(regression_targets, dim=0)
  25. classification_loss = F.cross_entropy(class_logits, labels)
  26. # get indices that correspond to the regression targets for
  27. # the corresponding ground truth labels, to be used with
  28. # advanced indexing
  29. sampled_pos_inds_subset = torch.where(labels > 0)[0]
  30. labels_pos = labels[sampled_pos_inds_subset]
  31. N, num_classes = class_logits.shape
  32. box_regression = box_regression.reshape(N, box_regression.size(-1) // 4, 4)
  33. box_loss = F.smooth_l1_loss(
  34. box_regression[sampled_pos_inds_subset, labels_pos],
  35. regression_targets[sampled_pos_inds_subset],
  36. beta=1 / 9,
  37. reduction="sum",
  38. )
  39. box_loss = box_loss / labels.numel()
  40. return classification_loss, box_loss
  41. def maskrcnn_inference(x, labels):
  42. # type: (Tensor, List[Tensor]) -> List[Tensor]
  43. """
  44. From the results of the CNN, post process the masks
  45. by taking the mask corresponding to the class with max
  46. probability (which are of fixed size and directly output
  47. by the CNN) and return the masks in the mask field of the BoxList.
  48. Args:
  49. x (Tensor): the mask logits
  50. labels (list[BoxList]): bounding boxes that are used as
  51. reference, one for ech image
  52. Returns:
  53. results (list[BoxList]): one BoxList for each image, containing
  54. the extra field mask
  55. """
  56. mask_prob = x.sigmoid()
  57. # select masks corresponding to the predicted classes
  58. num_masks = x.shape[0]
  59. boxes_per_image = [label.shape[0] for label in labels]
  60. labels = torch.cat(labels)
  61. index = torch.arange(num_masks, device=labels.device)
  62. mask_prob = mask_prob[index, labels][:, None]
  63. mask_prob = mask_prob.split(boxes_per_image, dim=0)
  64. return mask_prob
  65. def project_masks_on_boxes(gt_masks, boxes, matched_idxs, M):
  66. # type: (Tensor, Tensor, Tensor, int) -> Tensor
  67. """
  68. Given segmentation masks and the bounding boxes corresponding
  69. to the location of the masks in the image, this function
  70. crops and resizes the masks in the position defined by the
  71. boxes. This prepares the masks for them to be fed to the
  72. loss computation as the targets.
  73. """
  74. matched_idxs = matched_idxs.to(boxes)
  75. rois = torch.cat([matched_idxs[:, None], boxes], dim=1)
  76. gt_masks = gt_masks[:, None].to(rois)
  77. return roi_align(gt_masks, rois, (M, M), 1.0)[:, 0]
  78. def maskrcnn_loss(mask_logits, proposals, gt_masks, gt_labels, mask_matched_idxs):
  79. # type: (Tensor, List[Tensor], List[Tensor], List[Tensor], List[Tensor]) -> Tensor
  80. """
  81. Args:
  82. proposals (list[BoxList])
  83. mask_logits (Tensor)
  84. targets (list[BoxList])
  85. Return:
  86. mask_loss (Tensor): scalar tensor containing the loss
  87. """
  88. discretization_size = mask_logits.shape[-1]
  89. labels = [gt_label[idxs] for gt_label, idxs in zip(gt_labels, mask_matched_idxs)]
  90. mask_targets = [
  91. project_masks_on_boxes(m, p, i, discretization_size) for m, p, i in zip(gt_masks, proposals, mask_matched_idxs)
  92. ]
  93. labels = torch.cat(labels, dim=0)
  94. mask_targets = torch.cat(mask_targets, dim=0)
  95. # torch.mean (in binary_cross_entropy_with_logits) doesn't
  96. # accept empty tensors, so handle it separately
  97. if mask_targets.numel() == 0:
  98. return mask_logits.sum() * 0
  99. mask_loss = F.binary_cross_entropy_with_logits(
  100. mask_logits[torch.arange(labels.shape[0], device=labels.device), labels], mask_targets
  101. )
  102. return mask_loss
  103. def keypoints_to_heatmap(keypoints, rois, heatmap_size):
  104. # type: (Tensor, Tensor, int) -> Tuple[Tensor, Tensor]
  105. offset_x = rois[:, 0]
  106. offset_y = rois[:, 1]
  107. scale_x = heatmap_size / (rois[:, 2] - rois[:, 0])
  108. scale_y = heatmap_size / (rois[:, 3] - rois[:, 1])
  109. offset_x = offset_x[:, None]
  110. offset_y = offset_y[:, None]
  111. scale_x = scale_x[:, None]
  112. scale_y = scale_y[:, None]
  113. x = keypoints[..., 0]
  114. y = keypoints[..., 1]
  115. x_boundary_inds = x == rois[:, 2][:, None]
  116. y_boundary_inds = y == rois[:, 3][:, None]
  117. x = (x - offset_x) * scale_x
  118. x = x.floor().long()
  119. y = (y - offset_y) * scale_y
  120. y = y.floor().long()
  121. x[x_boundary_inds] = heatmap_size - 1
  122. y[y_boundary_inds] = heatmap_size - 1
  123. valid_loc = (x >= 0) & (y >= 0) & (x < heatmap_size) & (y < heatmap_size)
  124. vis = keypoints[..., 2] > 0
  125. valid = (valid_loc & vis).long()
  126. lin_ind = y * heatmap_size + x
  127. heatmaps = lin_ind * valid
  128. return heatmaps, valid
  129. def _onnx_heatmaps_to_keypoints(
  130. maps, maps_i, roi_map_width, roi_map_height, widths_i, heights_i, offset_x_i, offset_y_i
  131. ):
  132. num_keypoints = torch.scalar_tensor(maps.size(1), dtype=torch.int64)
  133. width_correction = widths_i / roi_map_width
  134. height_correction = heights_i / roi_map_height
  135. roi_map = F.interpolate(
  136. maps_i[:, None], size=(int(roi_map_height), int(roi_map_width)), mode="bicubic", align_corners=False
  137. )[:, 0]
  138. w = torch.scalar_tensor(roi_map.size(2), dtype=torch.int64)
  139. pos = roi_map.reshape(num_keypoints, -1).argmax(dim=1)
  140. x_int = pos % w
  141. y_int = (pos - x_int) // w
  142. x = (torch.tensor(0.5, dtype=torch.float32) + x_int.to(dtype=torch.float32)) * width_correction.to(
  143. dtype=torch.float32
  144. )
  145. y = (torch.tensor(0.5, dtype=torch.float32) + y_int.to(dtype=torch.float32)) * height_correction.to(
  146. dtype=torch.float32
  147. )
  148. xy_preds_i_0 = x + offset_x_i.to(dtype=torch.float32)
  149. xy_preds_i_1 = y + offset_y_i.to(dtype=torch.float32)
  150. xy_preds_i_2 = torch.ones(xy_preds_i_1.shape, dtype=torch.float32)
  151. xy_preds_i = torch.stack(
  152. [
  153. xy_preds_i_0.to(dtype=torch.float32),
  154. xy_preds_i_1.to(dtype=torch.float32),
  155. xy_preds_i_2.to(dtype=torch.float32),
  156. ],
  157. 0,
  158. )
  159. # TODO: simplify when indexing without rank will be supported by ONNX
  160. base = num_keypoints * num_keypoints + num_keypoints + 1
  161. ind = torch.arange(num_keypoints)
  162. ind = ind.to(dtype=torch.int64) * base
  163. end_scores_i = (
  164. roi_map.index_select(1, y_int.to(dtype=torch.int64))
  165. .index_select(2, x_int.to(dtype=torch.int64))
  166. .view(-1)
  167. .index_select(0, ind.to(dtype=torch.int64))
  168. )
  169. return xy_preds_i, end_scores_i
  170. @torch.jit._script_if_tracing
  171. def _onnx_heatmaps_to_keypoints_loop(
  172. maps, rois, widths_ceil, heights_ceil, widths, heights, offset_x, offset_y, num_keypoints
  173. ):
  174. xy_preds = torch.zeros((0, 3, int(num_keypoints)), dtype=torch.float32, device=maps.device)
  175. end_scores = torch.zeros((0, int(num_keypoints)), dtype=torch.float32, device=maps.device)
  176. for i in range(int(rois.size(0))):
  177. xy_preds_i, end_scores_i = _onnx_heatmaps_to_keypoints(
  178. maps, maps[i], widths_ceil[i], heights_ceil[i], widths[i], heights[i], offset_x[i], offset_y[i]
  179. )
  180. xy_preds = torch.cat((xy_preds.to(dtype=torch.float32), xy_preds_i.unsqueeze(0).to(dtype=torch.float32)), 0)
  181. end_scores = torch.cat(
  182. (end_scores.to(dtype=torch.float32), end_scores_i.to(dtype=torch.float32).unsqueeze(0)), 0
  183. )
  184. return xy_preds, end_scores
  185. def heatmaps_to_keypoints(maps, rois):
  186. """Extract predicted keypoint locations from heatmaps. Output has shape
  187. (#rois, 4, #keypoints) with the 4 rows corresponding to (x, y, logit, prob)
  188. for each keypoint.
  189. """
  190. # This function converts a discrete image coordinate in a HEATMAP_SIZE x
  191. # HEATMAP_SIZE image to a continuous keypoint coordinate. We maintain
  192. # consistency with keypoints_to_heatmap_labels by using the conversion from
  193. # Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a
  194. # continuous coordinate.
  195. offset_x = rois[:, 0]
  196. offset_y = rois[:, 1]
  197. widths = rois[:, 2] - rois[:, 0]
  198. heights = rois[:, 3] - rois[:, 1]
  199. widths = widths.clamp(min=1)
  200. heights = heights.clamp(min=1)
  201. widths_ceil = widths.ceil()
  202. heights_ceil = heights.ceil()
  203. num_keypoints = maps.shape[1]
  204. if torchvision._is_tracing():
  205. xy_preds, end_scores = _onnx_heatmaps_to_keypoints_loop(
  206. maps,
  207. rois,
  208. widths_ceil,
  209. heights_ceil,
  210. widths,
  211. heights,
  212. offset_x,
  213. offset_y,
  214. torch.scalar_tensor(num_keypoints, dtype=torch.int64),
  215. )
  216. return xy_preds.permute(0, 2, 1), end_scores
  217. xy_preds = torch.zeros((len(rois), 3, num_keypoints), dtype=torch.float32, device=maps.device)
  218. end_scores = torch.zeros((len(rois), num_keypoints), dtype=torch.float32, device=maps.device)
  219. for i in range(len(rois)):
  220. roi_map_width = int(widths_ceil[i].item())
  221. roi_map_height = int(heights_ceil[i].item())
  222. width_correction = widths[i] / roi_map_width
  223. height_correction = heights[i] / roi_map_height
  224. roi_map = F.interpolate(
  225. maps[i][:, None], size=(roi_map_height, roi_map_width), mode="bicubic", align_corners=False
  226. )[:, 0]
  227. # roi_map_probs = scores_to_probs(roi_map.copy())
  228. w = roi_map.shape[2]
  229. pos = roi_map.reshape(num_keypoints, -1).argmax(dim=1)
  230. x_int = pos % w
  231. y_int = torch.div(pos - x_int, w, rounding_mode="floor")
  232. # assert (roi_map_probs[k, y_int, x_int] ==
  233. # roi_map_probs[k, :, :].max())
  234. x = (x_int.float() + 0.5) * width_correction
  235. y = (y_int.float() + 0.5) * height_correction
  236. xy_preds[i, 0, :] = x + offset_x[i]
  237. xy_preds[i, 1, :] = y + offset_y[i]
  238. xy_preds[i, 2, :] = 1
  239. end_scores[i, :] = roi_map[torch.arange(num_keypoints, device=roi_map.device), y_int, x_int]
  240. return xy_preds.permute(0, 2, 1), end_scores
  241. def keypointrcnn_loss(keypoint_logits, proposals, gt_keypoints, keypoint_matched_idxs):
  242. # type: (Tensor, List[Tensor], List[Tensor], List[Tensor]) -> Tensor
  243. N, K, H, W = keypoint_logits.shape
  244. if H != W:
  245. raise ValueError(
  246. f"keypoint_logits height and width (last two elements of shape) should be equal. Instead got H = {H} and W = {W}"
  247. )
  248. discretization_size = H
  249. heatmaps = []
  250. valid = []
  251. for proposals_per_image, gt_kp_in_image, midx in zip(proposals, gt_keypoints, keypoint_matched_idxs):
  252. kp = gt_kp_in_image[midx]
  253. heatmaps_per_image, valid_per_image = keypoints_to_heatmap(kp, proposals_per_image, discretization_size)
  254. heatmaps.append(heatmaps_per_image.view(-1))
  255. valid.append(valid_per_image.view(-1))
  256. keypoint_targets = torch.cat(heatmaps, dim=0)
  257. valid = torch.cat(valid, dim=0).to(dtype=torch.uint8)
  258. valid = torch.where(valid)[0]
  259. # torch.mean (in binary_cross_entropy_with_logits) doesn't
  260. # accept empty tensors, so handle it sepaartely
  261. if keypoint_targets.numel() == 0 or len(valid) == 0:
  262. return keypoint_logits.sum() * 0
  263. keypoint_logits = keypoint_logits.view(N * K, H * W)
  264. keypoint_loss = F.cross_entropy(keypoint_logits[valid], keypoint_targets[valid])
  265. return keypoint_loss
  266. def keypointrcnn_inference(x, boxes):
  267. # type: (Tensor, List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]
  268. kp_probs = []
  269. kp_scores = []
  270. boxes_per_image = [box.size(0) for box in boxes]
  271. x2 = x.split(boxes_per_image, dim=0)
  272. for xx, bb in zip(x2, boxes):
  273. kp_prob, scores = heatmaps_to_keypoints(xx, bb)
  274. kp_probs.append(kp_prob)
  275. kp_scores.append(scores)
  276. return kp_probs, kp_scores
  277. def _onnx_expand_boxes(boxes, scale):
  278. # type: (Tensor, float) -> Tensor
  279. w_half = (boxes[:, 2] - boxes[:, 0]) * 0.5
  280. h_half = (boxes[:, 3] - boxes[:, 1]) * 0.5
  281. x_c = (boxes[:, 2] + boxes[:, 0]) * 0.5
  282. y_c = (boxes[:, 3] + boxes[:, 1]) * 0.5
  283. w_half = w_half.to(dtype=torch.float32) * scale
  284. h_half = h_half.to(dtype=torch.float32) * scale
  285. boxes_exp0 = x_c - w_half
  286. boxes_exp1 = y_c - h_half
  287. boxes_exp2 = x_c + w_half
  288. boxes_exp3 = y_c + h_half
  289. boxes_exp = torch.stack((boxes_exp0, boxes_exp1, boxes_exp2, boxes_exp3), 1)
  290. return boxes_exp
  291. # the next two functions should be merged inside Masker
  292. # but are kept here for the moment while we need them
  293. # temporarily for paste_mask_in_image
  294. def expand_boxes(boxes, scale):
  295. # type: (Tensor, float) -> Tensor
  296. if torchvision._is_tracing():
  297. return _onnx_expand_boxes(boxes, scale)
  298. w_half = (boxes[:, 2] - boxes[:, 0]) * 0.5
  299. h_half = (boxes[:, 3] - boxes[:, 1]) * 0.5
  300. x_c = (boxes[:, 2] + boxes[:, 0]) * 0.5
  301. y_c = (boxes[:, 3] + boxes[:, 1]) * 0.5
  302. w_half *= scale
  303. h_half *= scale
  304. boxes_exp = torch.zeros_like(boxes)
  305. boxes_exp[:, 0] = x_c - w_half
  306. boxes_exp[:, 2] = x_c + w_half
  307. boxes_exp[:, 1] = y_c - h_half
  308. boxes_exp[:, 3] = y_c + h_half
  309. return boxes_exp
  310. @torch.jit.unused
  311. def expand_masks_tracing_scale(M, padding):
  312. # type: (int, int) -> float
  313. return torch.tensor(M + 2 * padding).to(torch.float32) / torch.tensor(M).to(torch.float32)
  314. def expand_masks(mask, padding):
  315. # type: (Tensor, int) -> Tuple[Tensor, float]
  316. M = mask.shape[-1]
  317. if torch._C._get_tracing_state(): # could not import is_tracing(), not sure why
  318. scale = expand_masks_tracing_scale(M, padding)
  319. else:
  320. scale = float(M + 2 * padding) / M
  321. padded_mask = F.pad(mask, (padding,) * 4)
  322. return padded_mask, scale
  323. def paste_mask_in_image(mask, box, im_h, im_w):
  324. # type: (Tensor, Tensor, int, int) -> Tensor
  325. TO_REMOVE = 1
  326. w = int(box[2] - box[0] + TO_REMOVE)
  327. h = int(box[3] - box[1] + TO_REMOVE)
  328. w = max(w, 1)
  329. h = max(h, 1)
  330. # Set shape to [batchxCxHxW]
  331. mask = mask.expand((1, 1, -1, -1))
  332. # Resize mask
  333. mask = F.interpolate(mask, size=(h, w), mode="bilinear", align_corners=False)
  334. mask = mask[0][0]
  335. im_mask = torch.zeros((im_h, im_w), dtype=mask.dtype, device=mask.device)
  336. x_0 = max(box[0], 0)
  337. x_1 = min(box[2] + 1, im_w)
  338. y_0 = max(box[1], 0)
  339. y_1 = min(box[3] + 1, im_h)
  340. im_mask[y_0:y_1, x_0:x_1] = mask[(y_0 - box[1]) : (y_1 - box[1]), (x_0 - box[0]) : (x_1 - box[0])]
  341. return im_mask
  342. def _onnx_paste_mask_in_image(mask, box, im_h, im_w):
  343. one = torch.ones(1, dtype=torch.int64)
  344. zero = torch.zeros(1, dtype=torch.int64)
  345. w = box[2] - box[0] + one
  346. h = box[3] - box[1] + one
  347. w = torch.max(torch.cat((w, one)))
  348. h = torch.max(torch.cat((h, one)))
  349. # Set shape to [batchxCxHxW]
  350. mask = mask.expand((1, 1, mask.size(0), mask.size(1)))
  351. # Resize mask
  352. mask = F.interpolate(mask, size=(int(h), int(w)), mode="bilinear", align_corners=False)
  353. mask = mask[0][0]
  354. x_0 = torch.max(torch.cat((box[0].unsqueeze(0), zero)))
  355. x_1 = torch.min(torch.cat((box[2].unsqueeze(0) + one, im_w.unsqueeze(0))))
  356. y_0 = torch.max(torch.cat((box[1].unsqueeze(0), zero)))
  357. y_1 = torch.min(torch.cat((box[3].unsqueeze(0) + one, im_h.unsqueeze(0))))
  358. unpaded_im_mask = mask[(y_0 - box[1]) : (y_1 - box[1]), (x_0 - box[0]) : (x_1 - box[0])]
  359. # TODO : replace below with a dynamic padding when support is added in ONNX
  360. # pad y
  361. zeros_y0 = torch.zeros(y_0, unpaded_im_mask.size(1))
  362. zeros_y1 = torch.zeros(im_h - y_1, unpaded_im_mask.size(1))
  363. concat_0 = torch.cat((zeros_y0, unpaded_im_mask.to(dtype=torch.float32), zeros_y1), 0)[0:im_h, :]
  364. # pad x
  365. zeros_x0 = torch.zeros(concat_0.size(0), x_0)
  366. zeros_x1 = torch.zeros(concat_0.size(0), im_w - x_1)
  367. im_mask = torch.cat((zeros_x0, concat_0, zeros_x1), 1)[:, :im_w]
  368. return im_mask
  369. @torch.jit._script_if_tracing
  370. def _onnx_paste_masks_in_image_loop(masks, boxes, im_h, im_w):
  371. res_append = torch.zeros(0, im_h, im_w)
  372. for i in range(masks.size(0)):
  373. mask_res = _onnx_paste_mask_in_image(masks[i][0], boxes[i], im_h, im_w)
  374. mask_res = mask_res.unsqueeze(0)
  375. res_append = torch.cat((res_append, mask_res))
  376. return res_append
  377. def paste_masks_in_image(masks, boxes, img_shape, padding=1):
  378. # type: (Tensor, Tensor, Tuple[int, int], int) -> Tensor
  379. masks, scale = expand_masks(masks, padding=padding)
  380. boxes = expand_boxes(boxes, scale).to(dtype=torch.int64)
  381. im_h, im_w = img_shape
  382. if torchvision._is_tracing():
  383. return _onnx_paste_masks_in_image_loop(
  384. masks, boxes, torch.scalar_tensor(im_h, dtype=torch.int64), torch.scalar_tensor(im_w, dtype=torch.int64)
  385. )[:, None]
  386. res = [paste_mask_in_image(m[0], b, im_h, im_w) for m, b in zip(masks, boxes)]
  387. if len(res) > 0:
  388. ret = torch.stack(res, dim=0)[:, None]
  389. else:
  390. ret = masks.new_empty((0, 1, im_h, im_w))
  391. return ret
  392. class RoIHeads(nn.Module):
  393. __annotations__ = {
  394. "box_coder": det_utils.BoxCoder,
  395. "proposal_matcher": det_utils.Matcher,
  396. "fg_bg_sampler": det_utils.BalancedPositiveNegativeSampler,
  397. }
  398. def __init__(
  399. self,
  400. box_roi_pool,
  401. box_head,
  402. box_predictor,
  403. # Faster R-CNN training
  404. fg_iou_thresh,
  405. bg_iou_thresh,
  406. batch_size_per_image,
  407. positive_fraction,
  408. bbox_reg_weights,
  409. # Faster R-CNN inference
  410. score_thresh,
  411. nms_thresh,
  412. detections_per_img,
  413. # Line
  414. line_roi_pool=None,
  415. line_head=None,
  416. line_predictor=None,
  417. # Mask
  418. mask_roi_pool=None,
  419. mask_head=None,
  420. mask_predictor=None,
  421. keypoint_roi_pool=None,
  422. keypoint_head=None,
  423. keypoint_predictor=None,
  424. ):
  425. super().__init__()
  426. self.box_similarity = box_ops.box_iou
  427. # assign ground-truth boxes for each proposal
  428. self.proposal_matcher = det_utils.Matcher(fg_iou_thresh, bg_iou_thresh, allow_low_quality_matches=False)
  429. self.fg_bg_sampler = det_utils.BalancedPositiveNegativeSampler(batch_size_per_image, positive_fraction)
  430. if bbox_reg_weights is None:
  431. bbox_reg_weights = (10.0, 10.0, 5.0, 5.0)
  432. self.box_coder = det_utils.BoxCoder(bbox_reg_weights)
  433. self.box_roi_pool = box_roi_pool
  434. self.box_head = box_head
  435. self.box_predictor = box_predictor
  436. self.score_thresh = score_thresh
  437. self.nms_thresh = nms_thresh
  438. self.detections_per_img = detections_per_img
  439. self.line_roi_pool = line_roi_pool
  440. self.line_head = line_head
  441. self.line_predictor = line_predictor
  442. self.mask_roi_pool = mask_roi_pool
  443. self.mask_head = mask_head
  444. self.mask_predictor = mask_predictor
  445. self.keypoint_roi_pool = keypoint_roi_pool
  446. self.keypoint_head = keypoint_head
  447. self.keypoint_predictor = keypoint_predictor
  448. def has_mask(self):
  449. if self.mask_roi_pool is None:
  450. return False
  451. if self.mask_head is None:
  452. return False
  453. if self.mask_predictor is None:
  454. return False
  455. return True
  456. def has_keypoint(self):
  457. if self.keypoint_roi_pool is None:
  458. return False
  459. if self.keypoint_head is None:
  460. return False
  461. if self.keypoint_predictor is None:
  462. return False
  463. return True
  464. def has_line(self):
  465. if self.line_roi_pool is None:
  466. return False
  467. if self.line_head is None:
  468. return False
  469. if self.line_predictor is None:
  470. return False
  471. return True
  472. def assign_targets_to_proposals(self, proposals, gt_boxes, gt_labels):
  473. # type: (List[Tensor], List[Tensor], List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]
  474. matched_idxs = []
  475. labels = []
  476. for proposals_in_image, gt_boxes_in_image, gt_labels_in_image in zip(proposals, gt_boxes, gt_labels):
  477. if gt_boxes_in_image.numel() == 0:
  478. # Background image
  479. device = proposals_in_image.device
  480. clamped_matched_idxs_in_image = torch.zeros(
  481. (proposals_in_image.shape[0],), dtype=torch.int64, device=device
  482. )
  483. labels_in_image = torch.zeros((proposals_in_image.shape[0],), dtype=torch.int64, device=device)
  484. else:
  485. # set to self.box_similarity when https://github.com/pytorch/pytorch/issues/27495 lands
  486. match_quality_matrix = box_ops.box_iou(gt_boxes_in_image, proposals_in_image)
  487. matched_idxs_in_image = self.proposal_matcher(match_quality_matrix)
  488. clamped_matched_idxs_in_image = matched_idxs_in_image.clamp(min=0)
  489. labels_in_image = gt_labels_in_image[clamped_matched_idxs_in_image]
  490. labels_in_image = labels_in_image.to(dtype=torch.int64)
  491. # Label background (below the low threshold)
  492. bg_inds = matched_idxs_in_image == self.proposal_matcher.BELOW_LOW_THRESHOLD
  493. labels_in_image[bg_inds] = 0
  494. # Label ignore proposals (between low and high thresholds)
  495. ignore_inds = matched_idxs_in_image == self.proposal_matcher.BETWEEN_THRESHOLDS
  496. labels_in_image[ignore_inds] = -1 # -1 is ignored by sampler
  497. matched_idxs.append(clamped_matched_idxs_in_image)
  498. labels.append(labels_in_image)
  499. return matched_idxs, labels
  500. def subsample(self, labels):
  501. # type: (List[Tensor]) -> List[Tensor]
  502. sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels)
  503. sampled_inds = []
  504. for img_idx, (pos_inds_img, neg_inds_img) in enumerate(zip(sampled_pos_inds, sampled_neg_inds)):
  505. img_sampled_inds = torch.where(pos_inds_img | neg_inds_img)[0]
  506. sampled_inds.append(img_sampled_inds)
  507. return sampled_inds
  508. def add_gt_proposals(self, proposals, gt_boxes):
  509. # type: (List[Tensor], List[Tensor]) -> List[Tensor]
  510. proposals = [torch.cat((proposal, gt_box)) for proposal, gt_box in zip(proposals, gt_boxes)]
  511. return proposals
  512. def check_targets(self, targets):
  513. # type: (Optional[List[Dict[str, Tensor]]]) -> None
  514. if targets is None:
  515. raise ValueError("targets should not be None")
  516. if not all(["boxes" in t for t in targets]):
  517. raise ValueError("Every element of targets should have a boxes key")
  518. if not all(["labels" in t for t in targets]):
  519. raise ValueError("Every element of targets should have a labels key")
  520. if self.has_mask():
  521. if not all(["masks" in t for t in targets]):
  522. raise ValueError("Every element of targets should have a masks key")
  523. def select_training_samples(
  524. self,
  525. proposals, # type: List[Tensor]
  526. targets, # type: Optional[List[Dict[str, Tensor]]]
  527. ):
  528. # type: (...) -> Tuple[List[Tensor], List[Tensor], List[Tensor], List[Tensor]]
  529. self.check_targets(targets)
  530. if targets is None:
  531. raise ValueError("targets should not be None")
  532. dtype = proposals[0].dtype
  533. device = proposals[0].device
  534. gt_boxes = [t["boxes"].to(dtype) for t in targets]
  535. gt_labels = [t["labels"] for t in targets]
  536. # append ground-truth bboxes to propos
  537. proposals = self.add_gt_proposals(proposals, gt_boxes)
  538. # get matching gt indices for each proposal
  539. matched_idxs, labels = self.assign_targets_to_proposals(proposals, gt_boxes, gt_labels)
  540. # sample a fixed proportion of positive-negative proposals
  541. sampled_inds = self.subsample(labels)
  542. matched_gt_boxes = []
  543. num_images = len(proposals)
  544. for img_id in range(num_images):
  545. img_sampled_inds = sampled_inds[img_id]
  546. proposals[img_id] = proposals[img_id][img_sampled_inds]
  547. labels[img_id] = labels[img_id][img_sampled_inds]
  548. matched_idxs[img_id] = matched_idxs[img_id][img_sampled_inds]
  549. gt_boxes_in_image = gt_boxes[img_id]
  550. if gt_boxes_in_image.numel() == 0:
  551. gt_boxes_in_image = torch.zeros((1, 4), dtype=dtype, device=device)
  552. matched_gt_boxes.append(gt_boxes_in_image[matched_idxs[img_id]])
  553. regression_targets = self.box_coder.encode(matched_gt_boxes, proposals)
  554. return proposals, matched_idxs, labels, regression_targets
  555. def postprocess_detections(
  556. self,
  557. class_logits, # type: Tensor
  558. box_regression, # type: Tensor
  559. proposals, # type: List[Tensor]
  560. image_shapes, # type: List[Tuple[int, int]]
  561. ):
  562. # type: (...) -> Tuple[List[Tensor], List[Tensor], List[Tensor]]
  563. device = class_logits.device
  564. num_classes = class_logits.shape[-1]
  565. boxes_per_image = [boxes_in_image.shape[0] for boxes_in_image in proposals]
  566. pred_boxes = self.box_coder.decode(box_regression, proposals)
  567. pred_scores = F.softmax(class_logits, -1)
  568. pred_boxes_list = pred_boxes.split(boxes_per_image, 0)
  569. pred_scores_list = pred_scores.split(boxes_per_image, 0)
  570. all_boxes = []
  571. all_scores = []
  572. all_labels = []
  573. for boxes, scores, image_shape in zip(pred_boxes_list, pred_scores_list, image_shapes):
  574. boxes = box_ops.clip_boxes_to_image(boxes, image_shape)
  575. # create labels for each prediction
  576. labels = torch.arange(num_classes, device=device)
  577. labels = labels.view(1, -1).expand_as(scores)
  578. # remove predictions with the background label
  579. boxes = boxes[:, 1:]
  580. scores = scores[:, 1:]
  581. labels = labels[:, 1:]
  582. # batch everything, by making every class prediction be a separate instance
  583. boxes = boxes.reshape(-1, 4)
  584. scores = scores.reshape(-1)
  585. labels = labels.reshape(-1)
  586. # remove low scoring boxes
  587. inds = torch.where(scores > self.score_thresh)[0]
  588. boxes, scores, labels = boxes[inds], scores[inds], labels[inds]
  589. # remove empty boxes
  590. keep = box_ops.remove_small_boxes(boxes, min_size=1e-2)
  591. boxes, scores, labels = boxes[keep], scores[keep], labels[keep]
  592. # non-maximum suppression, independently done per class
  593. keep = box_ops.batched_nms(boxes, scores, labels, self.nms_thresh)
  594. # keep only topk scoring predictions
  595. keep = keep[: self.detections_per_img]
  596. boxes, scores, labels = boxes[keep], scores[keep], labels[keep]
  597. all_boxes.append(boxes)
  598. all_scores.append(scores)
  599. all_labels.append(labels)
  600. return all_boxes, all_scores, all_labels
  601. def forward(
  602. self,
  603. features, # type: Dict[str, Tensor]
  604. proposals, # type: List[Tensor]
  605. image_shapes, # type: List[Tuple[int, int]]
  606. targets=None, # type: Optional[List[Dict[str, Tensor]]]
  607. ):
  608. # type: (...) -> Tuple[List[Dict[str, Tensor]], Dict[str, Tensor]]
  609. """
  610. Args:
  611. features (List[Tensor])
  612. proposals (List[Tensor[N, 4]])
  613. image_shapes (List[Tuple[H, W]])
  614. targets (List[Dict])
  615. """
  616. print(f'roihead forward!!!')
  617. if targets is not None:
  618. for t in targets:
  619. # TODO: https://github.com/pytorch/pytorch/issues/26731
  620. floating_point_types = (torch.float, torch.double, torch.half)
  621. if not t["boxes"].dtype in floating_point_types:
  622. raise TypeError(f"target boxes must of float type, instead got {t['boxes'].dtype}")
  623. if not t["labels"].dtype == torch.int64:
  624. raise TypeError(f"target labels must of int64 type, instead got {t['labels'].dtype}")
  625. if self.has_keypoint():
  626. if not t["keypoints"].dtype == torch.float32:
  627. raise TypeError(f"target keypoints must of float type, instead got {t['keypoints'].dtype}")
  628. if self.training:
  629. proposals, matched_idxs, labels, regression_targets = self.select_training_samples(proposals, targets)
  630. else:
  631. labels = None
  632. regression_targets = None
  633. matched_idxs = None
  634. box_features = self.box_roi_pool(features, proposals, image_shapes)
  635. box_features = self.box_head(box_features)
  636. class_logits, box_regression = self.box_predictor(box_features)
  637. result: List[Dict[str, torch.Tensor]] = []
  638. losses = {}
  639. if self.training:
  640. if labels is None:
  641. raise ValueError("labels cannot be None")
  642. if regression_targets is None:
  643. raise ValueError("regression_targets cannot be None")
  644. print(f'boxes compute losses')
  645. loss_classifier, loss_box_reg = fastrcnn_loss(class_logits, box_regression, labels, regression_targets)
  646. losses = {"loss_classifier": loss_classifier, "loss_box_reg": loss_box_reg}
  647. else:
  648. print(f'boxes postprocess')
  649. boxes, scores, labels = self.postprocess_detections(class_logits, box_regression, proposals, image_shapes)
  650. num_images = len(boxes)
  651. for i in range(num_images):
  652. result.append(
  653. {
  654. "boxes": boxes[i],
  655. "labels": labels[i],
  656. "scores": scores[i],
  657. }
  658. )
  659. if self.has_line():
  660. print(f'roi_heads forward has_line()!!!!')
  661. line_proposals = [p["boxes"] for p in result]
  662. if self.training:
  663. # during training, only focus on positive boxes
  664. num_images = len(proposals)
  665. line_proposals = []
  666. pos_matched_idxs = []
  667. if matched_idxs is None:
  668. raise ValueError("if in trainning, matched_idxs should not be None")
  669. for img_id in range(num_images):
  670. pos = torch.where(labels[img_id] > 0)[0]
  671. line_proposals.append(proposals[img_id][pos])
  672. pos_matched_idxs.append(matched_idxs[img_id][pos])
  673. else:
  674. pos_matched_idxs = None
  675. line_features = self.keypoint_roi_pool(features, line_proposals, image_shapes)
  676. line_features = self.keypoint_head(line_features)
  677. line_logits = self.keypoint_predictor(line_features)
  678. loss_keypoint = {}
  679. if self.training:
  680. if targets is None or pos_matched_idxs is None:
  681. raise ValueError("both targets and pos_matched_idxs should not be None when in training mode")
  682. gt_keypoints = [t["keypoints"] for t in targets]
  683. rcnn_loss_keypoint = keypointrcnn_loss(
  684. line_logits, line_proposals, gt_keypoints, pos_matched_idxs
  685. )
  686. loss_keypoint = {"loss_keypoint": rcnn_loss_keypoint}
  687. else:
  688. if line_logits is None or line_proposals is None:
  689. raise ValueError(
  690. "both keypoint_logits and keypoint_proposals should not be None when not in training mode"
  691. )
  692. keypoints_probs, kp_scores = keypointrcnn_inference(line_logits, line_proposals)
  693. for keypoint_prob, kps, r in zip(keypoints_probs, kp_scores, result):
  694. r["keypoints"] = keypoint_prob
  695. r["keypoints_scores"] = kps
  696. losses.update(loss_keypoint)
  697. if self.has_mask():
  698. mask_proposals = [p["boxes"] for p in result]
  699. if self.training:
  700. if matched_idxs is None:
  701. raise ValueError("if in training, matched_idxs should not be None")
  702. # during training, only focus on positive boxes
  703. num_images = len(proposals)
  704. mask_proposals = []
  705. pos_matched_idxs = []
  706. for img_id in range(num_images):
  707. pos = torch.where(labels[img_id] > 0)[0]
  708. mask_proposals.append(proposals[img_id][pos])
  709. pos_matched_idxs.append(matched_idxs[img_id][pos])
  710. else:
  711. pos_matched_idxs = None
  712. if self.mask_roi_pool is not None:
  713. mask_features = self.mask_roi_pool(features, mask_proposals, image_shapes)
  714. mask_features = self.mask_head(mask_features)
  715. mask_logits = self.mask_predictor(mask_features)
  716. else:
  717. raise Exception("Expected mask_roi_pool to be not None")
  718. loss_mask = {}
  719. if self.training:
  720. if targets is None or pos_matched_idxs is None or mask_logits is None:
  721. raise ValueError("targets, pos_matched_idxs, mask_logits cannot be None when training")
  722. gt_masks = [t["masks"] for t in targets]
  723. gt_labels = [t["labels"] for t in targets]
  724. rcnn_loss_mask = maskrcnn_loss(mask_logits, mask_proposals, gt_masks, gt_labels, pos_matched_idxs)
  725. loss_mask = {"loss_mask": rcnn_loss_mask}
  726. else:
  727. labels = [r["labels"] for r in result]
  728. masks_probs = maskrcnn_inference(mask_logits, labels)
  729. for mask_prob, r in zip(masks_probs, result):
  730. r["masks"] = mask_prob
  731. losses.update(loss_mask)
  732. # keep none checks in if conditional so torchscript will conditionally
  733. # compile each branch
  734. if self.has_keypoint():
  735. keypoint_proposals = [p["boxes"] for p in result]
  736. if self.training:
  737. # during training, only focus on positive boxes
  738. num_images = len(proposals)
  739. keypoint_proposals = []
  740. pos_matched_idxs = []
  741. if matched_idxs is None:
  742. raise ValueError("if in trainning, matched_idxs should not be None")
  743. for img_id in range(num_images):
  744. pos = torch.where(labels[img_id] > 0)[0]
  745. keypoint_proposals.append(proposals[img_id][pos])
  746. pos_matched_idxs.append(matched_idxs[img_id][pos])
  747. else:
  748. pos_matched_idxs = None
  749. keypoint_features = self.keypoint_roi_pool(features, keypoint_proposals, image_shapes)
  750. keypoint_features = self.keypoint_head(keypoint_features)
  751. keypoint_logits = self.keypoint_predictor(keypoint_features)
  752. loss_keypoint = {}
  753. if self.training:
  754. if targets is None or pos_matched_idxs is None:
  755. raise ValueError("both targets and pos_matched_idxs should not be None when in training mode")
  756. gt_keypoints = [t["keypoints"] for t in targets]
  757. rcnn_loss_keypoint = keypointrcnn_loss(
  758. keypoint_logits, keypoint_proposals, gt_keypoints, pos_matched_idxs
  759. )
  760. loss_keypoint = {"loss_keypoint": rcnn_loss_keypoint}
  761. else:
  762. if keypoint_logits is None or keypoint_proposals is None:
  763. raise ValueError(
  764. "both keypoint_logits and keypoint_proposals should not be None when not in training mode"
  765. )
  766. keypoints_probs, kp_scores = keypointrcnn_inference(keypoint_logits, keypoint_proposals)
  767. for keypoint_prob, kps, r in zip(keypoints_probs, kp_scores, result):
  768. r["keypoints"] = keypoint_prob
  769. r["keypoints_scores"] = kps
  770. losses.update(loss_keypoint)
  771. return result, losses