line_detect.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546
  1. import os
  2. from typing import Any, Callable, List, Optional, Tuple, Union
  3. import torch
  4. from torch import nn
  5. from libs.vision_libs import ops
  6. from libs.vision_libs.models import MobileNet_V3_Large_Weights, mobilenet_v3_large, EfficientNet_V2_S_Weights, \
  7. efficientnet_v2_s, detection, EfficientNet_V2_L_Weights, efficientnet_v2_l, EfficientNet_V2_M_Weights, \
  8. efficientnet_v2_m
  9. from libs.vision_libs.models.detection.anchor_utils import AnchorGenerator
  10. from libs.vision_libs.models.detection.rpn import RPNHead, RegionProposalNetwork
  11. from libs.vision_libs.models.detection.ssdlite import _mobilenet_extractor
  12. from libs.vision_libs.models.detection.transform import GeneralizedRCNNTransform
  13. from libs.vision_libs.ops import misc as misc_nn_ops, MultiScaleRoIAlign
  14. from libs.vision_libs.transforms._presets import ObjectDetection
  15. from libs.vision_libs.models._api import register_model, Weights, WeightsEnum
  16. from libs.vision_libs.models._meta import _COCO_PERSON_CATEGORIES, _COCO_PERSON_KEYPOINT_NAMES, _COCO_CATEGORIES
  17. from libs.vision_libs.models._utils import _ovewrite_value_param, handle_legacy_interface
  18. from libs.vision_libs.models.resnet import resnet50, ResNet50_Weights, ResNet18_Weights, resnet18
  19. from libs.vision_libs.models.detection._utils import overwrite_eps
  20. from libs.vision_libs.models.detection.backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers, \
  21. BackboneWithFPN, resnet_fpn_backbone
  22. from libs.vision_libs.models.detection.faster_rcnn import FasterRCNN, TwoMLPHead, FastRCNNPredictor
  23. from .heads.line_heads import LinePredictor
  24. from .loi_heads import RoIHeads
  25. from .trainer import Trainer
  26. from ..base import backbone_factory
  27. from ..base.backbone_factory import get_convnext_fpn, get_anchor_generator, get_maxvit_fpn, MaxVitBackbone, \
  28. get_swin_transformer_fpn
  29. # from ..base.backbone_factory import get_convnext_fpn, get_anchor_generator
  30. from ..base.base_detection_net import BaseDetectionNet
  31. import torch.nn.functional as F
  32. from ..base.high_reso_maxvit import maxvit_with_fpn
  33. from ..base.high_reso_resnet import resnet50fpn, resnet18fpn, resnet101fpn
  34. __all__ = [
  35. "LineDetect",
  36. "linedetect_resnet50_fpn",
  37. ]
  38. from ..line_net.line_detect import LineHeads
  39. def _default_anchorgen():
  40. anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
  41. aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
  42. return AnchorGenerator(anchor_sizes, aspect_ratios)
  43. class LineDetect(BaseDetectionNet):
  44. def __init__(
  45. self,
  46. backbone,
  47. num_classes=3,
  48. # transform parameters
  49. min_size=512,
  50. max_size=512,
  51. image_mean=None,
  52. image_std=None,
  53. # RPN parameters
  54. rpn_anchor_generator=None,
  55. rpn_head=None,
  56. rpn_pre_nms_top_n_train=2000,
  57. rpn_pre_nms_top_n_test=1000,
  58. rpn_post_nms_top_n_train=2000,
  59. rpn_post_nms_top_n_test=1000,
  60. rpn_nms_thresh=0.7,
  61. rpn_fg_iou_thresh=0.7,
  62. rpn_bg_iou_thresh=0.3,
  63. rpn_batch_size_per_image=256,
  64. rpn_positive_fraction=0.5,
  65. rpn_score_thresh=0.0,
  66. # Box parameters
  67. box_roi_pool=None,
  68. box_head=None,
  69. box_predictor=None,
  70. box_score_thresh=0.05,
  71. box_nms_thresh=0.5,
  72. box_detections_per_img=200,
  73. box_fg_iou_thresh=0.5,
  74. box_bg_iou_thresh=0.5,
  75. box_batch_size_per_image=512,
  76. box_positive_fraction=0.25,
  77. bbox_reg_weights=None,
  78. # line parameters
  79. line_roi_pool=None,
  80. line_head=None,
  81. line_predictor=None,
  82. # point parameters
  83. point_roi_pool=None,
  84. point_head=None,
  85. point_predictor=None,
  86. # arc parameters
  87. arc_roi_pool=None,
  88. arc_head=None,
  89. arc_predictor=None,
  90. num_points=3,
  91. **kwargs,
  92. ):
  93. out_channels = backbone.out_channels
  94. if rpn_anchor_generator is None:
  95. rpn_anchor_generator = _default_anchorgen()
  96. if rpn_head is None:
  97. rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
  98. rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
  99. rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)
  100. rpn = RegionProposalNetwork(
  101. rpn_anchor_generator,
  102. rpn_head,
  103. rpn_fg_iou_thresh,
  104. rpn_bg_iou_thresh,
  105. rpn_batch_size_per_image,
  106. rpn_positive_fraction,
  107. rpn_pre_nms_top_n,
  108. rpn_post_nms_top_n,
  109. rpn_nms_thresh,
  110. score_thresh=rpn_score_thresh,
  111. )
  112. if box_roi_pool is None:
  113. box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2)
  114. if box_head is None:
  115. resolution = box_roi_pool.output_size[0]
  116. representation_size = 1024
  117. box_head = TwoMLPHead(out_channels * resolution**2, representation_size)
  118. if box_predictor is None:
  119. representation_size = 1024
  120. box_predictor = ObjectionPredictor(representation_size, num_classes)
  121. roi_heads = RoIHeads(
  122. # Box
  123. box_roi_pool,
  124. box_head,
  125. box_predictor,
  126. box_fg_iou_thresh,
  127. box_bg_iou_thresh,
  128. box_batch_size_per_image,
  129. box_positive_fraction,
  130. bbox_reg_weights,
  131. box_score_thresh,
  132. box_nms_thresh,
  133. box_detections_per_img,
  134. )
  135. if image_mean is None:
  136. image_mean = [0.485, 0.456, 0.406]
  137. if image_std is None:
  138. image_std = [0.229, 0.224, 0.225]
  139. transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std, **kwargs)
  140. super().__init__(backbone, rpn, roi_heads, transform)
  141. if line_head is None:
  142. keypoint_layers = tuple(num_points for _ in range(8))
  143. line_head = LineHeads(8, keypoint_layers)
  144. if line_predictor is None:
  145. # keypoint_dim_reduced = 512 # == keypoint_layers[-1]
  146. line_predictor = LinePredictor(in_channels=256)
  147. self.roi_heads.line_roi_pool = line_roi_pool
  148. self.roi_heads.line_head = line_head
  149. self.roi_heads.line_predictor = line_predictor
  150. def start_train(self, cfg):
  151. # cfg = read_yaml(cfg)
  152. self.trainer = Trainer()
  153. self.trainer.train_from_cfg(model=self, cfg=cfg)
  154. def load_weights(self, save_path, device='cuda'):
  155. if os.path.exists(save_path):
  156. checkpoint = torch.load(save_path, map_location=device)
  157. self.load_state_dict(checkpoint['model_state_dict'])
  158. # if optimizer is not None:
  159. # optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
  160. # epoch = checkpoint['epoch']
  161. # loss = checkpoint['loss']
  162. # print(f"Loaded best model from {save_path} at epoch {epoch} with loss {loss:.4f}")
  163. print(f"Loaded model from {save_path}")
  164. else:
  165. print(f"No saved model found at {save_path}")
  166. return self
  167. class TwoMLPHead(nn.Module):
  168. """
  169. Standard heads for FPN-based models
  170. Args:
  171. in_channels (int): number of input channels
  172. representation_size (int): size of the intermediate representation
  173. """
  174. def __init__(self, in_channels, representation_size):
  175. super().__init__()
  176. self.fc6 = nn.Linear(in_channels, representation_size)
  177. self.fc7 = nn.Linear(representation_size, representation_size)
  178. def forward(self, x):
  179. x = x.flatten(start_dim=1)
  180. x = F.relu(self.fc6(x))
  181. x = F.relu(self.fc7(x))
  182. return x
  183. class ObjectionConvFCHead(nn.Sequential):
  184. def __init__(
  185. self,
  186. input_size: Tuple[int, int, int],
  187. conv_layers: List[int],
  188. fc_layers: List[int],
  189. norm_layer: Optional[Callable[..., nn.Module]] = None,
  190. ):
  191. """
  192. Args:
  193. input_size (Tuple[int, int, int]): the input size in CHW format.
  194. conv_layers (list): feature dimensions of each Convolution layer
  195. fc_layers (list): feature dimensions of each FCN layer
  196. norm_layer (callable, optional): Module specifying the normalization layer to use. Default: None
  197. """
  198. in_channels, in_height, in_width = input_size
  199. blocks = []
  200. previous_channels = in_channels
  201. for current_channels in conv_layers:
  202. blocks.append(misc_nn_ops.Conv2dNormActivation(previous_channels, current_channels, norm_layer=norm_layer))
  203. previous_channels = current_channels
  204. blocks.append(nn.Flatten())
  205. previous_channels = previous_channels * in_height * in_width
  206. for current_channels in fc_layers:
  207. blocks.append(nn.Linear(previous_channels, current_channels))
  208. blocks.append(nn.ReLU(inplace=True))
  209. previous_channels = current_channels
  210. super().__init__(*blocks)
  211. for layer in self.modules():
  212. if isinstance(layer, nn.Conv2d):
  213. nn.init.kaiming_normal_(layer.weight, mode="fan_out", nonlinearity="relu")
  214. if layer.bias is not None:
  215. nn.init.zeros_(layer.bias)
  216. class ObjectionPredictor(nn.Module):
  217. """
  218. Standard classification + bounding box regression layers
  219. for Fast R-CNN.
  220. Args:
  221. in_channels (int): number of input channels
  222. num_classes (int): number of output classes (including background)
  223. """
  224. def __init__(self, in_channels, num_classes):
  225. super().__init__()
  226. self.cls_score = nn.Linear(in_channels, num_classes)
  227. self.bbox_pred = nn.Linear(in_channels, num_classes * 4)
  228. def forward(self, x):
  229. if x.dim() == 4:
  230. torch._assert(
  231. list(x.shape[2:]) == [1, 1],
  232. f"x has the wrong shape, expecting the last two dimensions to be [1,1] instead of {list(x.shape[2:])}",
  233. )
  234. x = x.flatten(start_dim=1)
  235. scores = self.cls_score(x)
  236. bbox_deltas = self.bbox_pred(x)
  237. return scores, bbox_deltas
  238. def linedetect_newresnet18fpn(
  239. *,
  240. num_classes: Optional[int] = None,
  241. num_points:Optional[int] = None,
  242. **kwargs: Any,
  243. ) -> LineDetect:
  244. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  245. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  246. if num_classes is None:
  247. num_classes = 3
  248. if num_points is None:
  249. num_points = 3
  250. backbone =resnet18fpn()
  251. featmap_names=['0', '1', '2', '3','4','pool']
  252. # print(f'featmap_names:{featmap_names}')
  253. roi_pooler = MultiScaleRoIAlign(
  254. featmap_names=featmap_names,
  255. output_size=7,
  256. sampling_ratio=2
  257. )
  258. num_features=len(featmap_names)
  259. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  260. # print(f'anchor_sizes:{anchor_sizes}')
  261. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  262. # print(f'aspect_ratios:{aspect_ratios}')
  263. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  264. model = LineDetect(backbone, num_classes, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
  265. return model
  266. def linedetect_newresnet50fpn(
  267. *,
  268. num_classes: Optional[int] = None,
  269. num_points:Optional[int] = None,
  270. **kwargs: Any,
  271. ) -> LineDetect:
  272. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  273. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  274. if num_classes is None:
  275. num_classes = 3
  276. if num_points is None:
  277. num_points = 3
  278. backbone =resnet50fpn()
  279. featmap_names=['0', '1', '2', '3','4','pool']
  280. # print(f'featmap_names:{featmap_names}')
  281. roi_pooler = MultiScaleRoIAlign(
  282. featmap_names=featmap_names,
  283. output_size=7,
  284. sampling_ratio=2
  285. )
  286. num_features=len(featmap_names)
  287. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  288. # print(f'anchor_sizes:{anchor_sizes}')
  289. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  290. # print(f'aspect_ratios:{aspect_ratios}')
  291. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  292. model = LineDetect(backbone, num_classes, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
  293. return model
  294. def linedetect_newresnet101fpn(
  295. *,
  296. num_classes: Optional[int] = None,
  297. num_points:Optional[int] = None,
  298. **kwargs: Any,
  299. ) -> LineDetect:
  300. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  301. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  302. if num_classes is None:
  303. num_classes = 3
  304. if num_points is None:
  305. num_points = 3
  306. backbone =resnet101fpn()
  307. featmap_names=['0', '1', '2', '3','4','pool']
  308. # print(f'featmap_names:{featmap_names}')
  309. roi_pooler = MultiScaleRoIAlign(
  310. featmap_names=featmap_names,
  311. output_size=7,
  312. sampling_ratio=2
  313. )
  314. num_features=len(featmap_names)
  315. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  316. # print(f'anchor_sizes:{anchor_sizes}')
  317. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  318. # print(f'aspect_ratios:{aspect_ratios}')
  319. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  320. model = LineDetect(backbone, num_classes, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
  321. return model
  322. def linedetect_maxvitfpn(
  323. *,
  324. num_classes: Optional[int] = None,
  325. num_points:Optional[int] = None,
  326. **kwargs: Any,
  327. ) -> LineDetect:
  328. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  329. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  330. if num_classes is None:
  331. num_classes = 3
  332. if num_points is None:
  333. num_points = 3
  334. size=224*2
  335. maxvit = MaxVitBackbone(input_size=(size,size))
  336. # print(maxvit.named_children())
  337. # for i,layer in enumerate(maxvit.named_children()):
  338. # print(f'layer:{i}:{layer}')
  339. in_channels_list = [64, 64, 128, 256, 512]
  340. featmap_names = ['0', '1', '2', '3', '4', 'pool']
  341. roi_pooler = MultiScaleRoIAlign(
  342. featmap_names=featmap_names,
  343. output_size=7,
  344. sampling_ratio=2
  345. )
  346. backbone_with_fpn = BackboneWithFPN(
  347. maxvit,
  348. return_layers={'stem': '0', 'block0': '1', 'block1': '2', 'block2': '3', 'block3': '4'},
  349. # 确保这些键对应到实际的层
  350. in_channels_list=in_channels_list,
  351. out_channels=128
  352. )
  353. test_input = torch.randn(1, 3,size,size)
  354. model = LineDetect(
  355. backbone=backbone_with_fpn,
  356. min_size=size,
  357. max_size=size,
  358. num_classes=3, # COCO 数据集有 91 类
  359. rpn_anchor_generator=get_anchor_generator(backbone_with_fpn, test_input=test_input),
  360. box_roi_pool=roi_pooler
  361. )
  362. return model
  363. def linedetect_high_maxvitfpn(
  364. *,
  365. num_classes: Optional[int] = None,
  366. num_points:Optional[int] = None,
  367. **kwargs: Any,
  368. ) -> LineDetect:
  369. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  370. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  371. if num_classes is None:
  372. num_classes = 3
  373. if num_points is None:
  374. num_points = 3
  375. size=224*2
  376. maxvitfpn =maxvit_with_fpn(size=size)
  377. # print(maxvit.named_children())
  378. # for i,layer in enumerate(maxvit.named_children()):
  379. # print(f'layer:{i}:{layer}')
  380. in_channels_list = [64,64, 64, 128, 256, 512]
  381. featmap_names = ['0', '1', '2', '3', '4', '5','pool']
  382. roi_pooler = MultiScaleRoIAlign(
  383. featmap_names=featmap_names,
  384. output_size=7,
  385. sampling_ratio=2
  386. )
  387. test_input = torch.randn(1, 3,size,size)
  388. model = LineDetect(
  389. backbone=maxvitfpn,
  390. min_size=size,
  391. max_size=size,
  392. num_classes=3, # COCO 数据集有 91 类
  393. rpn_anchor_generator=get_anchor_generator(maxvitfpn, test_input=test_input),
  394. box_roi_pool=roi_pooler
  395. )
  396. return model
  397. def linedetect_swin_transformer_fpn(
  398. *,
  399. num_classes: Optional[int] = None,
  400. num_points:Optional[int] = None,
  401. type='t',
  402. **kwargs: Any,
  403. ) -> LineDetect:
  404. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  405. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  406. if num_classes is None:
  407. num_classes = 3
  408. if num_points is None:
  409. num_points = 3
  410. size=512
  411. backbone_with_fpn, roi_pooler, anchor_generator=get_swin_transformer_fpn(type=type)
  412. # test_input = torch.randn(1, 3,size,size)
  413. model = LineDetect(
  414. backbone=backbone_with_fpn,
  415. min_size=size,
  416. max_size=size,
  417. num_classes=3, # COCO 数据集有 91 类
  418. rpn_anchor_generator=anchor_generator,
  419. box_roi_pool=roi_pooler
  420. )
  421. return model
  422. def linedetect_resnet18_fpn(
  423. *,
  424. num_classes: Optional[int] = None,
  425. num_points: Optional[int] = None,
  426. **kwargs: Any,
  427. ) -> LineDetect:
  428. if num_classes is None:
  429. num_classes = 3
  430. if num_points is None:
  431. num_points = 3
  432. backbone = resnet_fpn_backbone(backbone_name='resnet18',weights=None)
  433. model = LineDetect(backbone, num_classes, num_points=num_points, **kwargs)
  434. return model
  435. def linedetect_resnet50_fpn(
  436. *,
  437. num_classes: Optional[int] = None,
  438. num_points: Optional[int] = None,
  439. **kwargs: Any,
  440. ) -> LineDetect:
  441. if num_classes is None:
  442. num_classes = 3
  443. if num_points is None:
  444. num_points = 3
  445. backbone = resnet_fpn_backbone(backbone_name='resnet18', weights=None)
  446. model = LineDetect(backbone, num_classes, num_points=num_points, **kwargs)
  447. return model