line_detect.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589
  1. import os
  2. from typing import Any, Callable, List, Optional, Tuple, Union
  3. import torch
  4. from torch import nn
  5. from libs.vision_libs import ops
  6. from libs.vision_libs.models import MobileNet_V3_Large_Weights, mobilenet_v3_large, EfficientNet_V2_S_Weights, \
  7. efficientnet_v2_s, detection, EfficientNet_V2_L_Weights, efficientnet_v2_l, EfficientNet_V2_M_Weights, \
  8. efficientnet_v2_m
  9. from libs.vision_libs.models.detection.anchor_utils import AnchorGenerator
  10. from libs.vision_libs.models.detection.rpn import RPNHead, RegionProposalNetwork
  11. from libs.vision_libs.models.detection.ssdlite import _mobilenet_extractor
  12. from libs.vision_libs.models.detection.transform import GeneralizedRCNNTransform
  13. from libs.vision_libs.ops import misc as misc_nn_ops, MultiScaleRoIAlign
  14. from libs.vision_libs.transforms._presets import ObjectDetection
  15. from libs.vision_libs.models._api import register_model, Weights, WeightsEnum
  16. from libs.vision_libs.models._meta import _COCO_PERSON_CATEGORIES, _COCO_PERSON_KEYPOINT_NAMES, _COCO_CATEGORIES
  17. from libs.vision_libs.models._utils import _ovewrite_value_param, handle_legacy_interface
  18. from libs.vision_libs.models.resnet import resnet50, ResNet50_Weights, ResNet18_Weights, resnet18
  19. from libs.vision_libs.models.detection._utils import overwrite_eps
  20. from libs.vision_libs.models.detection.backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers, \
  21. BackboneWithFPN, resnet_fpn_backbone
  22. from libs.vision_libs.models.detection.faster_rcnn import FasterRCNN, TwoMLPHead, FastRCNNPredictor
  23. from .heads.arc_heads import ArcHeads, ArcPredictor
  24. from .heads.line_heads import LinePredictor
  25. from .heads.point_heads import PointHeads, PointPredictor
  26. from .loi_heads import RoIHeads
  27. from .trainer import Trainer
  28. from ..base import backbone_factory
  29. from ..base.backbone_factory import get_convnext_fpn, get_anchor_generator, get_maxvit_fpn, MaxVitBackbone, \
  30. get_swin_transformer_fpn
  31. # from ..base.backbone_factory import get_convnext_fpn, get_anchor_generator
  32. from ..base.base_detection_net import BaseDetectionNet
  33. import torch.nn.functional as F
  34. from ..base.high_reso_maxvit import maxvit_with_fpn
  35. from ..base.high_reso_resnet import resnet50fpn, resnet18fpn, resnet101fpn
  36. __all__ = [
  37. "LineDetect",
  38. "linedetect_resnet50_fpn",
  39. ]
  40. from ..line_net.line_detect import LineHeads
  41. def _default_anchorgen():
  42. anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
  43. aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
  44. return AnchorGenerator(anchor_sizes, aspect_ratios)
  45. class LineDetect(BaseDetectionNet):
  46. def __init__(
  47. self,
  48. backbone,
  49. num_classes=3,
  50. # transform parameters
  51. min_size=512,
  52. max_size=512,
  53. image_mean=None,
  54. image_std=None,
  55. # RPN parameters
  56. rpn_anchor_generator=None,
  57. rpn_head=None,
  58. rpn_pre_nms_top_n_train=2000,
  59. rpn_pre_nms_top_n_test=1000,
  60. rpn_post_nms_top_n_train=2000,
  61. rpn_post_nms_top_n_test=1000,
  62. rpn_nms_thresh=0.7,
  63. rpn_fg_iou_thresh=0.7,
  64. rpn_bg_iou_thresh=0.3,
  65. rpn_batch_size_per_image=256,
  66. rpn_positive_fraction=0.5,
  67. rpn_score_thresh=0.0,
  68. # Box parameters
  69. box_roi_pool=None,
  70. box_head=None,
  71. box_predictor=None,
  72. box_score_thresh=0.05,
  73. box_nms_thresh=0.5,
  74. box_detections_per_img=200,
  75. box_fg_iou_thresh=0.5,
  76. box_bg_iou_thresh=0.5,
  77. box_batch_size_per_image=512,
  78. box_positive_fraction=0.25,
  79. bbox_reg_weights=None,
  80. # line parameters
  81. line_roi_pool=None,
  82. line_head=None,
  83. line_predictor=None,
  84. # point parameters
  85. point_roi_pool=None,
  86. point_head=None,
  87. point_predictor=None,
  88. # arc parameters
  89. arc_roi_pool=None,
  90. arc_head=None,
  91. arc_predictor=None,
  92. num_points=3,
  93. detect_point=False,
  94. detect_line=True,
  95. detect_arc=False,
  96. **kwargs,
  97. ):
  98. out_channels = backbone.out_channels
  99. if rpn_anchor_generator is None:
  100. rpn_anchor_generator = _default_anchorgen()
  101. if rpn_head is None:
  102. rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
  103. rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
  104. rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)
  105. rpn = RegionProposalNetwork(
  106. rpn_anchor_generator,
  107. rpn_head,
  108. rpn_fg_iou_thresh,
  109. rpn_bg_iou_thresh,
  110. rpn_batch_size_per_image,
  111. rpn_positive_fraction,
  112. rpn_pre_nms_top_n,
  113. rpn_post_nms_top_n,
  114. rpn_nms_thresh,
  115. score_thresh=rpn_score_thresh,
  116. )
  117. if box_roi_pool is None:
  118. box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2)
  119. if box_head is None:
  120. resolution = box_roi_pool.output_size[0]
  121. representation_size = 1024
  122. box_head = TwoMLPHead(out_channels * resolution**2, representation_size)
  123. if box_predictor is None:
  124. representation_size = 1024
  125. box_predictor = ObjectionPredictor(representation_size, num_classes)
  126. roi_heads = RoIHeads(
  127. # Box
  128. box_roi_pool,
  129. box_head,
  130. box_predictor,
  131. box_fg_iou_thresh,
  132. box_bg_iou_thresh,
  133. box_batch_size_per_image,
  134. box_positive_fraction,
  135. bbox_reg_weights,
  136. box_score_thresh,
  137. box_nms_thresh,
  138. box_detections_per_img,
  139. detect_point=detect_point,
  140. detect_line=detect_line,
  141. detect_arc=detect_arc,
  142. )
  143. if image_mean is None:
  144. image_mean = [0.485, 0.456, 0.406]
  145. if image_std is None:
  146. image_std = [0.229, 0.224, 0.225]
  147. transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std, **kwargs)
  148. super().__init__(backbone, rpn, roi_heads, transform)
  149. if line_head is None and detect_line:
  150. layers = tuple(num_points for _ in range(8))
  151. line_head = LineHeads(8, layers)
  152. if line_predictor is None and detect_line:
  153. # keypoint_dim_reduced = 512 # == keypoint_layers[-1]
  154. line_predictor = LinePredictor(in_channels=256)
  155. if point_head is None and detect_point:
  156. layers = tuple(num_points for _ in range(8))
  157. point_head = PointHeads(8, layers)
  158. if point_predictor is None and detect_point:
  159. # keypoint_dim_reduced = 512 # == keypoint_layers[-1]
  160. point_predictor = PointPredictor(in_channels=128)
  161. if detect_arc and arc_head is None:
  162. layers = tuple(num_points for _ in range(8))
  163. arc_head=ArcHeads(8,layers)
  164. if detect_arc and arc_predictor is None:
  165. layers = tuple(num_points for _ in range(8))
  166. arc_predictor=ArcPredictor(in_channels=128)
  167. self.roi_heads.line_roi_pool = line_roi_pool
  168. self.roi_heads.line_head = line_head
  169. self.roi_heads.line_predictor = line_predictor
  170. self.roi_heads.point_roi_pool = point_roi_pool
  171. self.roi_heads.point_head = point_head
  172. self.roi_heads.point_predictor = point_predictor
  173. self.roi_heads.arc_roi_pool = arc_roi_pool
  174. self.roi_heads.arc_head = arc_head
  175. self.roi_heads.arc_predictor = arc_predictor
  176. def start_train(self, cfg):
  177. # cfg = read_yaml(cfg)
  178. self.trainer = Trainer()
  179. self.trainer.train_from_cfg(model=self, cfg=cfg)
  180. def load_weights(self, save_path, device='cuda'):
  181. if os.path.exists(save_path):
  182. checkpoint = torch.load(save_path, map_location=device)
  183. self.load_state_dict(checkpoint['model_state_dict'])
  184. # if optimizer is not None:
  185. # optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
  186. # epoch = checkpoint['epoch']
  187. # loss = checkpoint['loss']
  188. # print(f"Loaded best model from {save_path} at epoch {epoch} with loss {loss:.4f}")
  189. print(f"Loaded model from {save_path}")
  190. else:
  191. print(f"No saved model found at {save_path}")
  192. return self
  193. class TwoMLPHead(nn.Module):
  194. """
  195. Standard heads for FPN-based models
  196. Args:
  197. in_channels (int): number of input channels
  198. representation_size (int): size of the intermediate representation
  199. """
  200. def __init__(self, in_channels, representation_size):
  201. super().__init__()
  202. self.fc6 = nn.Linear(in_channels, representation_size)
  203. self.fc7 = nn.Linear(representation_size, representation_size)
  204. def forward(self, x):
  205. x = x.flatten(start_dim=1)
  206. x = F.relu(self.fc6(x))
  207. x = F.relu(self.fc7(x))
  208. return x
  209. class ObjectionConvFCHead(nn.Sequential):
  210. def __init__(
  211. self,
  212. input_size: Tuple[int, int, int],
  213. conv_layers: List[int],
  214. fc_layers: List[int],
  215. norm_layer: Optional[Callable[..., nn.Module]] = None,
  216. ):
  217. """
  218. Args:
  219. input_size (Tuple[int, int, int]): the input size in CHW format.
  220. conv_layers (list): feature dimensions of each Convolution layer
  221. fc_layers (list): feature dimensions of each FCN layer
  222. norm_layer (callable, optional): Module specifying the normalization layer to use. Default: None
  223. """
  224. in_channels, in_height, in_width = input_size
  225. blocks = []
  226. previous_channels = in_channels
  227. for current_channels in conv_layers:
  228. blocks.append(misc_nn_ops.Conv2dNormActivation(previous_channels, current_channels, norm_layer=norm_layer))
  229. previous_channels = current_channels
  230. blocks.append(nn.Flatten())
  231. previous_channels = previous_channels * in_height * in_width
  232. for current_channels in fc_layers:
  233. blocks.append(nn.Linear(previous_channels, current_channels))
  234. blocks.append(nn.ReLU(inplace=True))
  235. previous_channels = current_channels
  236. super().__init__(*blocks)
  237. for layer in self.modules():
  238. if isinstance(layer, nn.Conv2d):
  239. nn.init.kaiming_normal_(layer.weight, mode="fan_out", nonlinearity="relu")
  240. if layer.bias is not None:
  241. nn.init.zeros_(layer.bias)
  242. class ObjectionPredictor(nn.Module):
  243. """
  244. Standard classification + bounding box regression layers
  245. for Fast R-CNN.
  246. Args:
  247. in_channels (int): number of input channels
  248. num_classes (int): number of output classes (including background)
  249. """
  250. def __init__(self, in_channels, num_classes):
  251. super().__init__()
  252. self.cls_score = nn.Linear(in_channels, num_classes)
  253. self.bbox_pred = nn.Linear(in_channels, num_classes * 4)
  254. def forward(self, x):
  255. if x.dim() == 4:
  256. torch._assert(
  257. list(x.shape[2:]) == [1, 1],
  258. f"x has the wrong shape, expecting the last two dimensions to be [1,1] instead of {list(x.shape[2:])}",
  259. )
  260. x = x.flatten(start_dim=1)
  261. scores = self.cls_score(x)
  262. bbox_deltas = self.bbox_pred(x)
  263. return scores, bbox_deltas
  264. def linedetect_newresnet18fpn(
  265. *,
  266. num_classes: Optional[int] = None,
  267. num_points:Optional[int] = None,
  268. **kwargs: Any,
  269. ) -> LineDetect:
  270. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  271. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  272. if num_classes is None:
  273. num_classes = 3
  274. if num_points is None:
  275. num_points = 3
  276. size=1024
  277. backbone =resnet18fpn()
  278. featmap_names=['0', '1', '2', '3','4','pool']
  279. # print(f'featmap_names:{featmap_names}')
  280. roi_pooler = MultiScaleRoIAlign(
  281. featmap_names=featmap_names,
  282. output_size=7,
  283. sampling_ratio=2
  284. )
  285. num_features=len(featmap_names)
  286. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  287. # print(f'anchor_sizes:{anchor_sizes}')
  288. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  289. # print(f'aspect_ratios:{aspect_ratios}')
  290. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  291. model = LineDetect(backbone, num_classes,min_size=size,max_size=size, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
  292. return model
  293. def linedetect_newresnet50fpn(
  294. *,
  295. num_classes: Optional[int] = None,
  296. num_points:Optional[int] = None,
  297. **kwargs: Any,
  298. ) -> LineDetect:
  299. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  300. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  301. if num_classes is None:
  302. num_classes = 3
  303. if num_points is None:
  304. num_points = 3
  305. size=768
  306. backbone =resnet50fpn(out_channels=256)
  307. featmap_names=['0', '1', '2', '3','4','pool']
  308. # print(f'featmap_names:{featmap_names}')
  309. roi_pooler = MultiScaleRoIAlign(
  310. featmap_names=featmap_names,
  311. output_size=7,
  312. sampling_ratio=2
  313. )
  314. num_features=len(featmap_names)
  315. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  316. # print(f'anchor_sizes:{anchor_sizes}')
  317. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  318. # print(f'aspect_ratios:{aspect_ratios}')
  319. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  320. model = LineDetect(backbone, num_classes,min_size=size,max_size=size, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
  321. return model
  322. def linedetect_newresnet101fpn(
  323. *,
  324. num_classes: Optional[int] = None,
  325. num_points:Optional[int] = None,
  326. **kwargs: Any,
  327. ) -> LineDetect:
  328. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  329. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  330. if num_classes is None:
  331. num_classes = 3
  332. if num_points is None:
  333. num_points = 3
  334. backbone =resnet101fpn(out_channels=256)
  335. featmap_names=['0', '1', '2', '3','4','pool']
  336. # print(f'featmap_names:{featmap_names}')
  337. roi_pooler = MultiScaleRoIAlign(
  338. featmap_names=featmap_names,
  339. output_size=7,
  340. sampling_ratio=2
  341. )
  342. num_features=len(featmap_names)
  343. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  344. # print(f'anchor_sizes:{anchor_sizes}')
  345. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  346. # print(f'aspect_ratios:{aspect_ratios}')
  347. anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
  348. model = LineDetect(backbone, num_classes, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler, **kwargs)
  349. return model
  350. def linedetect_maxvitfpn(
  351. *,
  352. num_classes: Optional[int] = None,
  353. num_points:Optional[int] = None,
  354. **kwargs: Any,
  355. ) -> LineDetect:
  356. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  357. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  358. if num_classes is None:
  359. num_classes = 4
  360. if num_points is None:
  361. num_points = 3
  362. <<<<<<< HEAD
  363. size=224*3
  364. =======
  365. size=224
  366. >>>>>>> 55050f283a5d85b7c3731e296d70483d8f7258e2
  367. maxvit = MaxVitBackbone(input_size=(size,size))
  368. # print(maxvit.named_children())
  369. # for i,layer in enumerate(maxvit.named_children()):
  370. # print(f'layer:{i}:{layer}')
  371. in_channels_list = [64, 64, 128, 256, 512]
  372. featmap_names = ['0', '1', '2', '3', '4', 'pool']
  373. roi_pooler = MultiScaleRoIAlign(
  374. featmap_names=featmap_names,
  375. output_size=7,
  376. sampling_ratio=2
  377. )
  378. backbone_with_fpn = BackboneWithFPN(
  379. maxvit,
  380. return_layers={'stem': '0', 'block0': '1', 'block1': '2', 'block2': '3', 'block3': '4'},
  381. # 确保这些键对应到实际的层
  382. in_channels_list=in_channels_list,
  383. out_channels=128
  384. )
  385. test_input = torch.randn(1, 3,size,size)
  386. model = LineDetect(
  387. backbone=backbone_with_fpn,
  388. min_size=size,
  389. max_size=size,
  390. num_classes=num_classes, # COCO 数据集有 91 类
  391. rpn_anchor_generator=get_anchor_generator(backbone_with_fpn, test_input=test_input),
  392. box_roi_pool=roi_pooler,
  393. detect_line=False,
  394. detect_point=False,
  395. detect_arc=True,
  396. )
  397. return model
  398. def linedetect_high_maxvitfpn(
  399. *,
  400. num_classes: Optional[int] = None,
  401. num_points:Optional[int] = None,
  402. **kwargs: Any,
  403. ) -> LineDetect:
  404. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  405. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  406. if num_classes is None:
  407. num_classes = 3
  408. if num_points is None:
  409. num_points = 3
  410. size=224*2
  411. maxvitfpn =maxvit_with_fpn(size=size)
  412. # print(maxvit.named_children())
  413. # for i,layer in enumerate(maxvit.named_children()):
  414. # print(f'layer:{i}:{layer}')
  415. in_channels_list = [64,64, 64, 128, 256, 512]
  416. featmap_names = ['0', '1', '2', '3', '4', '5','pool']
  417. roi_pooler = MultiScaleRoIAlign(
  418. featmap_names=featmap_names,
  419. output_size=7,
  420. sampling_ratio=2
  421. )
  422. test_input = torch.randn(1, 3,size,size)
  423. model = LineDetect(
  424. backbone=maxvitfpn,
  425. min_size=size,
  426. max_size=size,
  427. num_classes=3, # COCO 数据集有 91 类
  428. rpn_anchor_generator=get_anchor_generator(maxvitfpn, test_input=test_input),
  429. box_roi_pool=roi_pooler
  430. )
  431. return model
  432. def linedetect_swin_transformer_fpn(
  433. *,
  434. num_classes: Optional[int] = None,
  435. num_points:Optional[int] = None,
  436. type='t',
  437. **kwargs: Any,
  438. ) -> LineDetect:
  439. # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
  440. # weights_backbone = ResNet50_Weights.verify(weights_backbone)
  441. if num_classes is None:
  442. num_classes = 3
  443. if num_points is None:
  444. num_points = 3
  445. size=512
  446. backbone_with_fpn, roi_pooler, anchor_generator=get_swin_transformer_fpn(type=type)
  447. # test_input = torch.randn(1, 3,size,size)
  448. model = LineDetect(
  449. backbone=backbone_with_fpn,
  450. min_size=size,
  451. max_size=size,
  452. num_classes=3, # COCO 数据集有 91 类
  453. rpn_anchor_generator=anchor_generator,
  454. box_roi_pool=roi_pooler,
  455. detect_line=True,
  456. detect_point=False,
  457. )
  458. return model
  459. def linedetect_resnet18_fpn(
  460. *,
  461. num_classes: Optional[int] = None,
  462. num_points: Optional[int] = None,
  463. **kwargs: Any,
  464. ) -> LineDetect:
  465. if num_classes is None:
  466. num_classes = 3
  467. if num_points is None:
  468. num_points = 3
  469. size=1024
  470. backbone = resnet_fpn_backbone(backbone_name='resnet18',weights=None)
  471. model = LineDetect(backbone,min_size=size,max_size=size , num_classes=num_classes, num_points=num_points, **kwargs)
  472. return model
  473. def linedetect_resnet50_fpn(
  474. *,
  475. num_classes: Optional[int] = None,
  476. num_points: Optional[int] = None,
  477. **kwargs: Any,
  478. ) -> LineDetect:
  479. if num_classes is None:
  480. num_classes = 3
  481. if num_points is None:
  482. num_points = 3
  483. backbone = resnet_fpn_backbone(backbone_name='resnet18', weights=None)
  484. model = LineDetect(backbone, num_classes, num_points=num_points, **kwargs)
  485. return model