| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851 |
- import torch
- from matplotlib import pyplot as plt
- import torch.nn.functional as F
- def features_align(features, proposals, img_size):
- print(f'lines_features_align features:{features.shape},proposals:{len(proposals)}')
- align_feat_list = []
- for feat, proposals_per_img in zip(features, proposals):
- print(f'lines_features_align feat:{feat.shape}, proposals_per_img:{proposals_per_img.shape}')
- if proposals_per_img.shape[0]>0:
- feat = feat.unsqueeze(0)
- for proposal in proposals_per_img:
- align_feat = torch.zeros_like(feat)
- # print(f'align_feat:{align_feat.shape}')
- x1, y1, x2, y2 = map(lambda v: int(v.item()), proposal)
- # 将每个proposal框内的部分赋值到align_feats对应位置
- align_feat[:, :, y1:y2 + 1, x1:x2 + 1] = feat[:, :, y1:y2 + 1, x1:x2 + 1]
- align_feat_list.append(align_feat)
- # print(f'align_feat_list:{align_feat_list}')
- if len(align_feat_list) > 0:
- feats_tensor = torch.cat(align_feat_list)
- print(f'align features :{feats_tensor.shape}')
- else:
- feats_tensor = None
- return feats_tensor
- def normalize_tensor(t):
- return (t - t.min()) / (t.max() - t.min() + 1e-6)
- def line_length(lines):
- """
- 计算每条线段的长度
- lines: [N, 2, 2] 表示 N 条线段,每条线段由两个点组成
- 返回: [N]
- """
- return torch.norm(lines[:, 1] - lines[:, 0], dim=-1)
- def line_direction(lines):
- """
- 计算每条线段的单位方向向量
- lines: [N, 2, 2]
- 返回: [N, 2] 单位方向向量
- """
- vec = lines[:, 1] - lines[:, 0]
- return F.normalize(vec, dim=-1)
- def angle_loss_cosine(pred_dir, gt_dir):
- """
- 使用 cosine similarity 计算方向差异
- pred_dir: [N, 2]
- gt_dir: [N, 2]
- 返回: [N]
- """
- cos_sim = torch.sum(pred_dir * gt_dir, dim=-1).clamp(-1.0, 1.0)
- return 1.0 - cos_sim # 或者 torch.acos(cos_sim) / pi 也可
- def line_length(lines):
- """
- 计算每条线段的长度
- lines: [N, 2, 2] 表示 N 条线段,每条线段由两个点组成
- 返回: [N]
- """
- return torch.norm(lines[:, 1] - lines[:, 0], dim=-1)
- def line_direction(lines):
- """
- 计算每条线段的单位方向向量
- lines: [N, 2, 2]
- 返回: [N, 2] 单位方向向量
- """
- vec = lines[:, 1] - lines[:, 0]
- return F.normalize(vec, dim=-1)
- def angle_loss_cosine(pred_dir, gt_dir):
- """
- 使用 cosine similarity 计算方向差异
- pred_dir: [N, 2]
- gt_dir: [N, 2]
- 返回: [N]
- """
- cos_sim = torch.sum(pred_dir * gt_dir, dim=-1).clamp(-1.0, 1.0)
- return 1.0 - cos_sim # 或者 torch.acos(cos_sim) / pi 也可
- def single_point_to_heatmap(keypoints, rois, heatmap_size):
- # type: (Tensor, Tensor, int) -> Tensor
- print(f'rois:{rois.shape}')
- print(f'heatmap_size:{heatmap_size}')
- print(f'keypoints.shape:{keypoints.shape}')
- # batch_size, num_keypoints, _ = keypoints.shape
- x = keypoints[..., 0].unsqueeze(1)
- y = keypoints[..., 1].unsqueeze(1)
- gs = generate_gaussian_heatmaps(x, y,num_points=1, heatmap_size=heatmap_size, sigma=1.0)
- # show_heatmap(gs[0],'target')
- all_roi_heatmap = []
- for roi, heatmap in zip(rois, gs):
- # show_heatmap(heatmap, 'target')
- # print(f'heatmap:{heatmap.shape}')
- heatmap = heatmap.unsqueeze(0)
- x1, y1, x2, y2 = map(int, roi)
- roi_heatmap = torch.zeros_like(heatmap)
- roi_heatmap[..., y1:y2 + 1, x1:x2 + 1] = heatmap[..., y1:y2 + 1, x1:x2 + 1]
- # show_heatmap(roi_heatmap[0],'roi_heatmap')
- all_roi_heatmap.append(roi_heatmap)
- all_roi_heatmap = torch.cat(all_roi_heatmap)
- print(f'all_roi_heatmap:{all_roi_heatmap.shape}')
- return all_roi_heatmap
- def line_points_to_heatmap(keypoints, rois, heatmap_size):
- # type: (Tensor, Tensor, int) -> Tensor
- print(f'rois:{rois.shape}')
- print(f'heatmap_size:{heatmap_size}')
- print(f'keypoints.shape:{keypoints.shape}')
- # batch_size, num_keypoints, _ = keypoints.shape
- x = keypoints[..., 0]
- y = keypoints[..., 1]
- gs = generate_gaussian_heatmaps(x, y, heatmap_size,num_points=2, sigma=1.0)
- # show_heatmap(gs[0],'target')
- all_roi_heatmap = []
- for roi, heatmap in zip(rois, gs):
- # print(f'heatmap:{heatmap.shape}')
- # show_heatmap(heatmap,'target')
- heatmap = heatmap.unsqueeze(0)
- x1, y1, x2, y2 = map(int, roi)
- roi_heatmap = torch.zeros_like(heatmap)
- roi_heatmap[..., y1:y2 + 1, x1:x2 + 1] = heatmap[..., y1:y2 + 1, x1:x2 + 1]
- # show_heatmap(roi_heatmap[0],'roi_heatmap')
- all_roi_heatmap.append(roi_heatmap)
- if len(all_roi_heatmap) > 0:
- all_roi_heatmap = torch.cat(all_roi_heatmap)
- print(f'all_roi_heatmap:{all_roi_heatmap.shape}')
- else:
- all_roi_heatmap = None
- return all_roi_heatmap
- """
- 修改适配的原结构的点 转热图,适用于带roi_pool版本的
- """
- def line_points_to_heatmap_(keypoints, rois, heatmap_size):
- # type: (Tensor, Tensor, int) -> Tuple[Tensor, Tensor]
- print(f'rois:{rois.shape}')
- print(f'heatmap_size:{heatmap_size}')
- offset_x = rois[:, 0]
- offset_y = rois[:, 1]
- scale_x = heatmap_size / (rois[:, 2] - rois[:, 0])
- scale_y = heatmap_size / (rois[:, 3] - rois[:, 1])
- offset_x = offset_x[:, None]
- offset_y = offset_y[:, None]
- scale_x = scale_x[:, None]
- scale_y = scale_y[:, None]
- print(f'keypoints.shape:{keypoints.shape}')
- # batch_size, num_keypoints, _ = keypoints.shape
- x = keypoints[..., 0]
- y = keypoints[..., 1]
- # gs=generate_gaussian_heatmaps(x,y,512,1.0)
- # print(f'gs_heatmap shape:{gs.shape}')
- #
- # show_heatmap(gs[0],'target')
- x_boundary_inds = x == rois[:, 2][:, None]
- y_boundary_inds = y == rois[:, 3][:, None]
- x = (x - offset_x) * scale_x
- x = x.floor().long()
- y = (y - offset_y) * scale_y
- y = y.floor().long()
- x[x_boundary_inds] = heatmap_size - 1
- y[y_boundary_inds] = heatmap_size - 1
- # print(f'heatmaps x:{x}')
- # print(f'heatmaps y:{y}')
- valid_loc = (x >= 0) & (y >= 0) & (x < heatmap_size) & (y < heatmap_size)
- vis = keypoints[..., 2] > 0
- valid = (valid_loc & vis).long()
- gs_heatmap = generate_gaussian_heatmaps(x, y, heatmap_size, 1.0)
- # show_heatmap(gs_heatmap[0], 'feature')
- # print(f'gs_heatmap:{gs_heatmap.shape}')
- #
- # lin_ind = y * heatmap_size + x
- # print(f'lin_ind:{lin_ind.shape}')
- # heatmaps = lin_ind * valid
- return gs_heatmap
- def generate_gaussian_heatmaps(xs, ys, heatmap_size,num_points=2, sigma=2.0, device='cuda'):
- """
- 为一组点生成并合并高斯热图。
- Args:
- xs (Tensor): 形状为 (N, 2) 的所有点的 x 坐标
- ys (Tensor): 形状为 (N, 2) 的所有点的 y 坐标
- heatmap_size (int): 热图大小 H=W
- sigma (float): 高斯核标准差
- device (str): 设备类型 ('cpu' or 'cuda')
- Returns:
- Tensor: 形状为 (H, W) 的合并后的热图
- """
- assert xs.shape == ys.shape, "x and y must have the same shape"
- print(f'xs:{xs.shape}')
- # xs=xs.squeeze(1)
- # ys = ys.squeeze(1)
- print(f'xs1:{xs.shape}')
- N = xs.shape[0]
- print(f'N:{N},num_points:{num_points}')
- # 创建网格
- grid_y, grid_x = torch.meshgrid(
- torch.arange(heatmap_size, device=device),
- torch.arange(heatmap_size, device=device),
- indexing='ij'
- )
- # print(f'heatmap_size:{heatmap_size}')
- # 初始化输出热图
- combined_heatmap = torch.zeros((N, heatmap_size, heatmap_size), device=device)
- for i in range(N):
- heatmap= torch.zeros((heatmap_size, heatmap_size), device=device)
- for j in range(num_points):
- mu_x1 = xs[i, j].clamp(0, heatmap_size - 1).item()
- mu_y1 = ys[i, j].clamp(0, heatmap_size - 1).item()
- # print(f'mu_x1,mu_y1:{mu_x1},{mu_y1}')
- # 计算距离平方
- dist1 = (grid_x - mu_x1) ** 2 + (grid_y - mu_y1) ** 2
- # 计算高斯分布
- heatmap1 = torch.exp(-dist1 / (2 * sigma ** 2))
- heatmap+=heatmap1
- # mu_x2 = xs[i, 1].clamp(0, heatmap_size - 1).item()
- # mu_y2 = ys[i, 1].clamp(0, heatmap_size - 1).item()
- #
- # # 计算距离平方
- # dist2 = (grid_x - mu_x2) ** 2 + (grid_y - mu_y2) ** 2
- #
- # # 计算高斯分布
- # heatmap2 = torch.exp(-dist2 / (2 * sigma ** 2))
- #
- # heatmap = heatmap1 + heatmap2
- # 将当前热图累加到结果中
- combined_heatmap[i] = heatmap
- return combined_heatmap
- def generate_mask_gaussian_heatmaps(xs, ys, heatmap_size,num_points=2, sigma=2.0, device='cuda'):
- """
- 为一组点生成并合并高斯热图。
- Args:
- xs (Tensor): 形状为 (N, 2) 的所有点的 x 坐标
- ys (Tensor): 形状为 (N, 2) 的所有点的 y 坐标
- heatmap_size (int): 热图大小 H=W
- sigma (float): 高斯核标准差
- device (str): 设备类型 ('cpu' or 'cuda')
- Returns:
- Tensor: 形状为 (H, W) 的合并后的热图
- """
- assert xs.shape == ys.shape, "x and y must have the same shape"
- print(f'xs:{xs.shape}')
- xs=xs.squeeze(1)
- ys = ys.squeeze(1)
- print(f'xs1:{xs.shape}')
- N = xs.shape[0]
- print(f'N:{N},num_points:{num_points}')
- # 创建网格
- grid_y, grid_x = torch.meshgrid(
- torch.arange(heatmap_size, device=device),
- torch.arange(heatmap_size, device=device),
- indexing='ij'
- )
- # print(f'heatmap_size:{heatmap_size}')
- # 初始化输出热图
- combined_heatmap = torch.zeros((N, heatmap_size, heatmap_size), device=device)
- for i in range(N):
- heatmap= torch.zeros((heatmap_size, heatmap_size), device=device)
- for j in range(num_points):
- mu_x1 = xs[i, j].clamp(0, heatmap_size - 1).item()
- mu_y1 = ys[i, j].clamp(0, heatmap_size - 1).item()
- # print(f'mu_x1,mu_y1:{mu_x1},{mu_y1}')
- # 计算距离平方
- dist1 = (grid_x - mu_x1) ** 2 + (grid_y - mu_y1) ** 2
- # 计算高斯分布
- heatmap1 = torch.exp(-dist1 / (2 * sigma ** 2))
- heatmap+=heatmap1
- # mu_x2 = xs[i, 1].clamp(0, heatmap_size - 1).item()
- # mu_y2 = ys[i, 1].clamp(0, heatmap_size - 1).item()
- #
- # # 计算距离平方
- # dist2 = (grid_x - mu_x2) ** 2 + (grid_y - mu_y2) ** 2
- #
- # # 计算高斯分布
- # heatmap2 = torch.exp(-dist2 / (2 * sigma ** 2))
- #
- # heatmap = heatmap1 + heatmap2
- # 将当前热图累加到结果中
- combined_heatmap[i] = heatmap
- return combined_heatmap
- def non_maximum_suppression(a):
- ap = F.max_pool2d(a, 3, stride=1, padding=1)
- mask = (a == ap).float().clamp(min=0.0)
- return a * mask
- def heatmaps_to_points(maps, rois):
- point_preds = torch.zeros((len(rois), 2), dtype=torch.float32, device=maps.device)
- point_end_scores = torch.zeros((len(rois), 1), dtype=torch.float32, device=maps.device)
- print(f'heatmaps_to_lines:{maps.shape}')
- point_maps=maps[:,0]
- print(f'point_map:{point_maps.shape}')
- for i in range(len(rois)):
- point_roi_map = point_maps[i].unsqueeze(0)
- print(f'point_roi_map:{point_roi_map.shape}')
- # roi_map_probs = scores_to_probs(roi_map.copy())
- w = point_roi_map.shape[2]
- flatten_point_roi_map = non_maximum_suppression(point_roi_map).reshape(1, -1)
- point_score, point_index = torch.topk(flatten_point_roi_map, k=1)
- print(f'point index:{point_index}')
- # pos = roi_map.reshape(num_keypoints, -1).argmax(dim=1)
- point_x =point_index % w
- point_y = torch.div(point_index - point_x, w, rounding_mode="floor")
- point_preds[i, 0,] = point_x
- point_preds[i, 1,] = point_y
- point_end_scores[i, :] = point_roi_map[torch.arange(1, device=point_roi_map.device), point_y, point_x]
- return point_preds,point_end_scores
- def heatmaps_to_lines(maps, rois):
- line_preds = torch.zeros((len(rois), 3, 2), dtype=torch.float32, device=maps.device)
- line_end_scores = torch.zeros((len(rois), 2), dtype=torch.float32, device=maps.device)
- line_maps=maps[:,1]
- for i in range(len(rois)):
- line_roi_map = line_maps[i].unsqueeze(0)
- print(f'line_roi_map:{line_roi_map.shape}')
- # roi_map_probs = scores_to_probs(roi_map.copy())
- w = line_roi_map.shape[1]
- flatten_line_roi_map = non_maximum_suppression(line_roi_map).reshape(1, -1)
- line_score, line_index = torch.topk(flatten_line_roi_map, k=2)
- print(f'line index:{line_index}')
- # pos = roi_map.reshape(num_keypoints, -1).argmax(dim=1)
- pos = line_index
- line_x = pos % w
- line_y = torch.div(pos - line_x, w, rounding_mode="floor")
- line_preds[i, 0, :] = line_x
- line_preds[i, 1, :] = line_y
- line_preds[i, 2, :] = 1
- line_end_scores[i, :] = line_roi_map[torch.arange(1, device=line_roi_map.device), line_y, line_x]
- return line_preds.permute(0, 2, 1), line_end_scores
- # 显示热图的函数
- def show_heatmap(heatmap, title="Heatmap"):
- """
- 使用 matplotlib 显示热图。
- Args:
- heatmap (Tensor): 要显示的热图张量
- title (str): 图表标题
- """
- # 如果在 GPU 上,首先将其移动到 CPU 并转换为 numpy 数组
- if heatmap.is_cuda:
- heatmap = heatmap.cpu().numpy()
- else:
- heatmap = heatmap.numpy()
- plt.imshow(heatmap, cmap='hot', interpolation='nearest')
- plt.colorbar()
- plt.title(title)
- plt.show()
- def lines_point_pair_loss(line_logits, proposals, gt_lines, line_matched_idxs):
- # type: (Tensor, List[Tensor], List[Tensor], List[Tensor]) -> Tensor
- N, K, H, W = line_logits.shape
- len_proposals = len(proposals)
- print(f'lines_point_pair_loss line_logits.shape:{line_logits.shape},len_proposals:{len_proposals},line_matched_idxs:{line_matched_idxs}')
- if H != W:
- raise ValueError(
- f"line_logits height and width (last two elements of shape) should be equal. Instead got H = {H} and W = {W}"
- )
- discretization_size = H
- heatmaps = []
- gs_heatmaps = []
- valid = []
- for proposals_per_image, gt_kp_in_image, midx in zip(proposals, gt_lines, line_matched_idxs):
- print(f'line_proposals_per_image:{proposals_per_image.shape}')
- print(f'gt_lines:{gt_lines}')
- if proposals_per_image.shape[0] > 0 and gt_kp_in_image.shape[0] > 0:
- kp = gt_kp_in_image[midx]
- gs_heatmaps_per_img = line_points_to_heatmap(kp, proposals_per_image, discretization_size)
- gs_heatmaps.append(gs_heatmaps_per_img)
- # print(f'heatmaps_per_image:{heatmaps_per_image.shape}')
- # heatmaps.append(heatmaps_per_image.view(-1))
- # valid.append(valid_per_image.view(-1))
- # line_targets = torch.cat(heatmaps, dim=0)
- gs_heatmaps = torch.cat(gs_heatmaps, dim=0)
- print(f'gs_heatmaps:{gs_heatmaps.shape}, line_logits.shape:{line_logits.squeeze(1).shape}')
- # print(f'line_targets:{line_targets.shape},{line_targets}')
- # valid = torch.cat(valid, dim=0).to(dtype=torch.uint8)
- # valid = torch.where(valid)[0]
- # print(f' line_targets[valid]:{line_targets[valid]}')
- # torch.mean (in binary_cross_entropy_with_logits) doesn't
- # accept empty tensors, so handle it sepaartely
- # if line_targets.numel() == 0 or len(valid) == 0:
- # return line_logits.sum() * 0
- # line_logits = line_logits.view(N * K, H * W)
- # print(f'line_logits[valid]:{line_logits[valid].shape}')
- print(f'loss1 line_logits:{line_logits.shape}')
- line_logits = line_logits[:,1,:,:]
- print(f'loss2 line_logits:{line_logits.shape}')
- # line_loss = F.cross_entropy(line_logits[valid], line_targets[valid])
- line_loss = F.cross_entropy(line_logits, gs_heatmaps)
- return line_loss
- def compute_arc_loss(feature_logits, proposals, gt_, pos_matched_idxs):
- print(f'compute_arc_loss:{feature_logits.shape}')
- N, K, H, W = feature_logits.shape
- len_proposals = len(proposals)
- empty_count = 0
- non_empty_count = 0
- for prop in proposals:
- if prop.shape[0] == 0:
- empty_count += 1
- else:
- non_empty_count += 1
- print(f"Empty proposals count: {empty_count}")
- print(f"Non-empty proposals count: {non_empty_count}")
- print(f'starte to compute_point_loss')
- print(f'compute_point_loss line_logits.shape:{feature_logits.shape},len_proposals:{len_proposals}')
- if H != W:
- raise ValueError(
- f"line_logits height and width (last two elements of shape) should be equal. Instead got H = {H} and W = {W}"
- )
- discretization_size = H
- gs_heatmaps = []
- # print(f'point_matched_idxs:{point_matched_idxs}')
- for proposals_per_image, gt_kp_in_image, midx in zip(proposals, gt_, pos_matched_idxs):
- print(f'proposals_per_image:{proposals_per_image.shape}')
- kp = gt_kp_in_image[midx]
- # print(f'gt_kp_in_image:{gt_kp_in_image}')
- gs_heatmaps_per_img = arc_points_to_heatmap(kp, proposals_per_image, discretization_size)
- gs_heatmaps.append(gs_heatmaps_per_img)
- gs_heatmaps = torch.cat(gs_heatmaps, dim=0)
- print(f'gs_heatmaps:{gs_heatmaps.shape}, line_logits.shape:{feature_logits.squeeze(1).shape}')
- line_logits = feature_logits[:, 0]
- print(f'single_point_logits:{line_logits.shape}')
- line_loss = F.cross_entropy(line_logits, gs_heatmaps)
- return line_loss
- def arc_points_to_heatmap(keypoints, rois, heatmap_size):
- print(f'rois:{rois.shape}')
- print(f'heatmap_size:{heatmap_size}')
- print(f'keypoints.shape:{keypoints.shape}')
- # batch_size, num_keypoints, _ = keypoints.shape
- x = keypoints[..., 0].unsqueeze(1)
- y = keypoints[..., 1].unsqueeze(1)
- num_points=x.shape[2]
- print(f'num_points:{num_points}')
- gs = generate_mask_gaussian_heatmaps(x, y, num_points=num_points, heatmap_size=heatmap_size, sigma=1.0)
- # show_heatmap(gs[0],'target')
- all_roi_heatmap = []
- for roi, heatmap in zip(rois, gs):
- # show_heatmap(heatmap, 'target')
- print(f'heatmap:{heatmap.shape}')
- heatmap = heatmap.unsqueeze(0)
- x1, y1, x2, y2 = map(int, roi)
- roi_heatmap = torch.zeros_like(heatmap)
- roi_heatmap[..., y1:y2 + 1, x1:x2 + 1] = heatmap[..., y1:y2 + 1, x1:x2 + 1]
- # show_heatmap(roi_heatmap[0],'roi_heatmap')
- all_roi_heatmap.append(roi_heatmap)
- all_roi_heatmap = torch.cat(all_roi_heatmap)
- print(f'all_roi_heatmap:{all_roi_heatmap.shape}')
- return all_roi_heatmap
- def compute_point_loss(line_logits, proposals, gt_points, point_matched_idxs):
- # type: (Tensor, List[Tensor], List[Tensor], List[Tensor]) -> Tensor
- N, K, H, W = line_logits.shape
- len_proposals = len(proposals)
- empty_count = 0
- non_empty_count = 0
- for prop in proposals:
- if prop.shape[0] == 0:
- empty_count += 1
- else:
- non_empty_count += 1
- print(f"Empty proposals count: {empty_count}")
- print(f"Non-empty proposals count: {non_empty_count}")
- print(f'starte to compute_point_loss')
- print(f'compute_point_loss line_logits.shape:{line_logits.shape},len_proposals:{len_proposals}')
- if H != W:
- raise ValueError(
- f"line_logits height and width (last two elements of shape) should be equal. Instead got H = {H} and W = {W}"
- )
- discretization_size = H
- gs_heatmaps = []
- # print(f'point_matched_idxs:{point_matched_idxs}')
- for proposals_per_image, gt_kp_in_image, midx in zip(proposals, gt_points, point_matched_idxs):
- print(f'proposals_per_image:{proposals_per_image.shape}')
- kp = gt_kp_in_image[midx]
- # print(f'gt_kp_in_image:{gt_kp_in_image}')
- gs_heatmaps_per_img = single_point_to_heatmap(kp, proposals_per_image, discretization_size)
- gs_heatmaps.append(gs_heatmaps_per_img)
- gs_heatmaps = torch.cat(gs_heatmaps, dim=0)
- print(f'gs_heatmaps:{gs_heatmaps.shape}, line_logits.shape:{line_logits.squeeze(1).shape}')
- line_logits = line_logits[:,0]
- print(f'single_point_logits:{line_logits.shape}')
- line_loss = F.cross_entropy(line_logits, gs_heatmaps)
- return line_loss
- def lines_to_boxes(lines, img_size=511):
- """
- 输入:
- lines: Tensor of shape (N, 2, 2),表示 N 条线段,每个线段有两个端点 (x, y)
- img_size: int,图像尺寸,用于 clamp 边界
- 输出:
- boxes: Tensor of shape (N, 4),表示 N 个包围盒 [x_min, y_min, x_max, y_max]
- """
- # 提取所有线段的两个端点
- p1 = lines[:, 0] # (N, 2)
- p2 = lines[:, 1] # (N, 2)
- # 每条线段的 x 和 y 坐标
- x_coords = torch.stack([p1[:, 0], p2[:, 0]], dim=1) # (N, 2)
- y_coords = torch.stack([p1[:, 1], p2[:, 1]], dim=1) # (N, 2)
- # 计算包围盒边界
- x_min = x_coords.min(dim=1).values
- y_min = y_coords.min(dim=1).values
- x_max = x_coords.max(dim=1).values
- y_max = y_coords.max(dim=1).values
- # 扩展边界并限制在图像范围内
- x_min = (x_min - 1).clamp(min=0, max=img_size)
- y_min = (y_min - 1).clamp(min=0, max=img_size)
- x_max = (x_max + 1).clamp(min=0, max=img_size)
- y_max = (y_max + 1).clamp(min=0, max=img_size)
- # 合成包围盒
- boxes = torch.stack([x_min, y_min, x_max, y_max], dim=1) # (N, 4)
- return boxes
- def box_iou_pairwise(box1, box2):
- """
- 输入:
- box1: shape (N, 4)
- box2: shape (M, 4)
- 输出:
- ious: shape (min(N, M), ), 只计算 i = j 的配对
- """
- N = min(len(box1), len(box2))
- lt = torch.max(box1[:N, :2], box2[:N, :2]) # å·¦ä¸è§
- rb = torch.min(box1[:N, 2:], box2[:N, 2:]) # å³ä¸è§
- wh = (rb - lt).clamp(min=0) # 宽é«
- inter_area = wh[:, 0] * wh[:, 1] # 交éé¢ç§¯
- area1 = (box1[:N, 2] - box1[:N, 0]) * (box1[:N, 3] - box1[:N, 1])
- area2 = (box2[:N, 2] - box2[:N, 0]) * (box2[:N, 3] - box2[:N, 1])
- union_area = area1 + area2 - inter_area
- ious = inter_area / (union_area + 1e-6)
- return ious
- def line_iou_loss(x, boxes, gt_lines, matched_idx, img_size=511, alpha=1.0, beta=1.0, gamma=1.0):
- """
- Args:
- x: [N,1,H,W] 热力图
- boxes: [N,4] 框坐标
- gt_lines: [N,2,3] GT线段(含可见性)
- matched_idx: 匹配 index
- img_size: 图像尺寸
- alpha: IoU 损失权重
- beta: 长度损失权重
- gamma: 方向角度损失权重
- """
- losses = []
- boxes_per_image = [box.size(0) for box in boxes]
- x2 = x.split(boxes_per_image, dim=0)
- for xx, bb, gt_line, mid in zip(x2, boxes, gt_lines, matched_idx):
- p_prob, _ = heatmaps_to_lines(xx, bb)
- pred_lines = p_prob
- gt_line_points = gt_line[mid]
- if len(pred_lines) == 0 or len(gt_line_points) == 0:
- continue
- # IoU 损失
- pred_boxes = lines_to_boxes(pred_lines, img_size)
- gt_boxes = lines_to_boxes(gt_line_points, img_size)
- ious = box_iou_pairwise(pred_boxes, gt_boxes)
- iou_loss = 1.0 - ious # [N]
- # 长度损失
- pred_len = line_length(pred_lines)
- gt_len = line_length(gt_line_points)
- length_diff = F.l1_loss(pred_len, gt_len, reduction='none') # [N]
- # 方向角度损失
- pred_dir = line_direction(pred_lines)
- gt_dir = line_direction(gt_line_points)
- ang_loss = angle_loss_cosine(pred_dir, gt_dir) # [N]
- # 归一化每一项损失
- norm_iou = normalize_tensor(iou_loss)
- norm_len = normalize_tensor(length_diff)
- norm_ang = normalize_tensor(ang_loss)
- total = alpha * norm_iou + beta * norm_len + gamma * norm_ang
- losses.append(total)
- if not losses:
- return None
- return torch.mean(torch.cat(losses))
- def point_inference(x, point_boxes):
- # type: (Tensor, List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]
- points_probs = []
- points_scores = []
- boxes_per_image = [box.size(0) for box in point_boxes]
- x2 = x.split(boxes_per_image, dim=0)
- for xx, bb in zip(x2, point_boxes):
- point_prob,point_scores = heatmaps_to_points(xx, bb)
- points_probs.append(point_prob.unsqueeze(1))
- points_scores.append(point_scores)
- return points_probs,points_scores
- def line_inference(x, line_boxes):
- # type: (Tensor, List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]
- lines_probs = []
- lines_scores = []
- boxes_per_image = [box.size(0) for box in line_boxes]
- x2 = x.split(boxes_per_image, dim=0)
- # x2:tuple 2 x2[0]:[1,3,1024,1024]
- # line_box: list:2 [1,4] [1.4] fasterrcnn kuang
- for xx, bb in zip(x2, line_boxes):
- line_prob, line_scores, = heatmaps_to_lines(xx, bb)
- lines_probs.append(line_prob)
- lines_scores.append(line_scores)
- return lines_probs, lines_scores
- def arc_inference(x, point_boxes):
- # type: (Tensor, List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]
- points_probs = []
- points_scores = []
- boxes_per_image = [box.size(0) for box in point_boxes]
- x2 = x.split(boxes_per_image, dim=0)
- for xx, bb in zip(x2, point_boxes):
- point_prob,point_scores = heatmaps_to_arc(xx, bb)
- points_probs.append(point_prob.unsqueeze(1))
- points_scores.append(point_scores)
- return points_probs,points_scores
- import torch.nn.functional as F
- import torch.nn.functional as F
- def heatmaps_to_arc(maps, rois, threshold=0.1, output_size=(128, 128)):
- """
- Args:
- maps: [N, 3, H, W] - full heatmaps
- rois: [N, 4] - bounding boxes
- threshold: float - binarization threshold
- output_size: resized size for uniform NMS
- Returns:
- masks: [N, 1, H, W] - binary mask aligned with input map
- scores: [N, 1] - count of non-zero pixels in each mask
- """
- N, _, H, W = maps.shape
- masks = torch.zeros((N, 1, H, W), dtype=torch.float32, device=maps.device)
- scores = torch.zeros((N, 1), dtype=torch.float32, device=maps.device)
- point_maps = maps[:, 0] # È¡µÚÒ»¸öͨµÀ [N, H, W]
- print(f"==> heatmaps_to_arc: maps.shape = {maps.shape}, rois.shape = {rois.shape}")
- for i in range(N):
- x1, y1, x2, y2 = rois[i].long()
- x1 = x1.clamp(0, W - 1)
- x2 = x2.clamp(0, W - 1)
- y1 = y1.clamp(0, H - 1)
- y2 = y2.clamp(0, H - 1)
- print(f"[{i}] roi: ({x1.item()}, {y1.item()}, {x2.item()}, {y2.item()})")
- if x2 <= x1 or y2 <= y1:
- print(f" Skipped invalid ROI at index {i}")
- continue
- roi_map = point_maps[i, y1:y2, x1:x2] # [h, w]
- print(f" roi_map.shape: {roi_map.shape}")
- if roi_map.numel() == 0:
- print(f" Skipped empty ROI at index {i}")
- continue
- # resize to uniform size
- roi_map_resized = F.interpolate(
- roi_map.unsqueeze(0).unsqueeze(0),
- size=output_size,
- mode='bilinear',
- align_corners=False
- ) # [1, 1, H, W]
- print(f" roi_map_resized.shape: {roi_map_resized.shape}")
- # NMS + threshold
- nms_roi = non_maximum_suppression(roi_map_resized) # shape: [1, H, W]
- bin_mask = (nms_roi > threshold).float() # shape: [1, H, W]
- print(f" bin_mask.sum(): {bin_mask.sum().item()}")
- # resize back to original roi size
- h = int((y2 - y1).item())
- w = int((x2 - x1).item())
- # È·±£ bin_mask ÊÇ [1, 128, 128]
- assert bin_mask.dim() == 4, f"Expected 3D tensor [1, H, W], got {bin_mask.shape}"
- # ÉϲÉÑù»Ø ROI Ôʼ´óС
- bin_mask_original_size = F.interpolate(
- # bin_mask.unsqueeze(0), # ? [1, 1, 128, 128]
- bin_mask, # ? [1, 1, 128, 128]
- size=(h, w),
- mode='bilinear',
- align_corners=False
- )[0] # ? [1, h, w]
- masks[i, 0, y1:y2, x1:x2] = bin_mask_original_size.squeeze()
- scores[i] = bin_mask_original_size.sum()
- print(f" bin_mask_original_size.shape: {bin_mask_original_size.shape}, sum: {scores[i].item()}")
- print(f"==> Done. Total valid masks: {(scores > 0).sum().item()} / {N}")
- return masks, scores
|