line_dataset.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572
  1. import cv2
  2. import imageio
  3. import numpy as np
  4. from skimage.draw import ellipse
  5. from torch.utils.data.dataset import T_co
  6. from libs.vision_libs.utils import draw_keypoints
  7. from models.base.base_dataset import BaseDataset
  8. import json
  9. import os
  10. import PIL
  11. import matplotlib as mpl
  12. from torchvision.utils import draw_bounding_boxes
  13. import torchvision.transforms.v2 as transforms
  14. import torch
  15. import matplotlib.pyplot as plt
  16. from models.base.transforms import get_transforms
  17. from utils.data_process.mask.show_mask import save_full_mask
  18. from utils.data_process.show_prams import print_params
  19. def validate_keypoints(keypoints, image_width, image_height):
  20. for kp in keypoints:
  21. x, y, v = kp
  22. if not (0 <= x < image_width and 0 <= y < image_height):
  23. raise ValueError(f"Key point ({x}, {y}) is out of bounds for image size ({image_width}, {image_height})")
  24. """
  25. 直接读取xanlabel标注的数据集json格式
  26. """
  27. class LineDataset(BaseDataset):
  28. def __init__(self, dataset_path, data_type, transforms=None, augmentation=False, dataset_type=None, img_type='rgb',
  29. target_type='pixel'):
  30. super().__init__(dataset_path)
  31. self.data_path = dataset_path
  32. self.data_type = data_type
  33. print(f'data_path:{dataset_path}')
  34. self.transforms = transforms
  35. self.img_path = os.path.join(dataset_path, "images/" + dataset_type)
  36. self.lbl_path = os.path.join(dataset_path, "labels/" + dataset_type)
  37. self.imgs = os.listdir(self.img_path)
  38. self.lbls = os.listdir(self.lbl_path)
  39. self.target_type = target_type
  40. self.img_type = img_type
  41. self.augmentation = augmentation
  42. print(f'augmentation:{augmentation}')
  43. # self.default_transform = DefaultTransform()
  44. def __getitem__(self, index) -> T_co:
  45. img_path = os.path.join(self.img_path, self.imgs[index])
  46. if self.data_type == 'tiff':
  47. lbl_path = os.path.join(self.lbl_path, self.imgs[index][:-4] + 'json')
  48. img = imageio.v3.imread(img_path)[:, :, 0]
  49. print(f'img shape:{img.shape}')
  50. w, h = img.shape[:2]
  51. img = img.reshape(w, h, 1)
  52. img_3channel = np.zeros((w, h, 3), dtype=img.dtype)
  53. img_3channel[:, :, 2] = img[:, :, 0]
  54. img = torch.from_numpy(img_3channel).permute(2, 1, 0)
  55. else:
  56. lbl_path = os.path.join(self.lbl_path, self.imgs[index][:-3] + 'json')
  57. img = PIL.Image.open(img_path).convert('RGB')
  58. w, h = img.size
  59. # wire_labels, target = self.read_target(item=index, lbl_path=lbl_path, shape=(h, w))
  60. target = self.read_target(item=index, lbl_path=lbl_path, shape=(h, w),image=img)
  61. self.transforms = get_transforms(augmention=self.augmentation)
  62. img, target = self.transforms(img, target)
  63. return img, target
  64. def __len__(self):
  65. return len(self.imgs)
  66. def read_target(self, item, lbl_path, shape,extra=None,image=None):
  67. # print(f'shape:{shape}')
  68. # print(f'lbl_path:{lbl_path}')
  69. with open(lbl_path, 'r') as file:
  70. lable_all = json.load(file)
  71. objs = lable_all["shapes"]
  72. point_pairs = objs[0]['points']
  73. # print(f'point_pairs:{point_pairs}')
  74. target = {}
  75. target["image_id"] = torch.tensor(item)
  76. #boxes, line_point_pairs, points, labels, mask_ends, mask_params
  77. boxes, lines, points, labels, arc_ends, arc_params = get_boxes_lines(objs, shape)
  78. # print_params(arc_ends, arc_params)
  79. if points is not None:
  80. target["points"] = points
  81. # if lines is not None:
  82. # a = torch.full((lines.shape[0],), 2).unsqueeze(1)
  83. # lines = torch.cat((lines, a), dim=1)
  84. # target["lines"] = lines.to(torch.float32).view(-1, 2, 3)
  85. if lines is not None:
  86. label_3d = labels.view(-1, 1, 1).expand(-1, 2, -1) # [N] -> [N,2,1]
  87. line1 = torch.cat([lines, label_3d], dim=-1) # [N,2,3]
  88. target["lines"] = line1.to(torch.float32)
  89. if arc_ends is not None:
  90. target['mask_ends'] = arc_ends
  91. if arc_params is not None:
  92. target['mask_params'] = arc_params
  93. arc_angles = compute_arc_angles(arc_ends, arc_params)
  94. # print_params(arc_angles)
  95. arc_masks = []
  96. for i in range(len(arc_params)):
  97. arc_param_i = arc_params[i].view(-1) # shape (5,)
  98. arc_angle_i = arc_angles[i].view(-1) # shape (2,)
  99. arc7 = torch.cat([arc_param_i, arc_angle_i], dim=0) # shape (7,)
  100. mask = arc_to_mask(arc7, shape, line_width=1)
  101. arc_masks.append(mask)
  102. print_params(arc_masks,image)
  103. target['circle_masks'] = torch.stack(arc_masks, dim=0)
  104. # for i, m in enumerate(target['circle_masks']):
  105. # save_full_mask(
  106. # m,
  107. # name=f"arc_mask_{i}",
  108. # out_dir=r"/home/zhaoyinghan/py_ws/code/circle_huayan/MultiVisionModels/models/line_detect/out_feature_dataset",
  109. # save_png=True,
  110. # save_npy=True,
  111. # image=image,
  112. # show_on_image=True
  113. # )
  114. target["boxes"] = boxes
  115. target["labels"] = labels
  116. # target["boxes"], lines,target["points"], target["labels"] = get_boxes_lines(objs,shape)
  117. # print(f'lines:{lines}')
  118. # target["labels"] = torch.ones(len(target["boxes"]), dtype=torch.int64)
  119. # print(f'target points:{target["points"]}')
  120. # target["lines"] = lines.to(torch.float32).view(-1,2,3)
  121. # print(f'')
  122. # print(f'lines:{target["lines"].shape}')
  123. target["img_size"] = shape
  124. # validate_keypoints(lines, shape[0], shape[1])
  125. return target
  126. def show(self, idx, show_type='all'):
  127. image, target = self.__getitem__(idx)
  128. cmap = plt.get_cmap("jet")
  129. norm = mpl.colors.Normalize(vmin=0.4, vmax=1.0)
  130. sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
  131. sm.set_array([])
  132. # img_path = os.path.join(self.img_path, self.imgs[idx])
  133. # print(f'boxes:{target["boxes"]}')
  134. img = image
  135. if show_type == 'circle_masks':
  136. boxed_image = draw_bounding_boxes((img * 255).to(torch.uint8), target["boxes"],
  137. colors="yellow", width=1)
  138. # arc = target['arc']
  139. arc_mask = target['circle_masks']
  140. # print(f'taget circle:{arc.shape}')
  141. print(f'target circle_masks:{arc_mask.shape}')
  142. combined = torch.cat(list(arc_mask), dim=1)
  143. plt.imshow(combined)
  144. plt.show()
  145. if show_type == 'circle_masks11':
  146. boxed_image = draw_bounding_boxes((img * 255).to(torch.uint8), target["boxes"],
  147. colors="yellow", width=1)
  148. circle = target['circles']
  149. circle_mask = target['circle_masks']
  150. print(f'taget circle:{circle.shape}')
  151. print(f'target circle_masks:{circle_mask.shape}')
  152. plt.imshow(circle_mask.squeeze(0))
  153. keypoint_img = draw_keypoints(boxed_image, circle, colors='red', width=3)
  154. # plt.imshow(keypoint_img.permute(1, 2, 0).numpy())
  155. plt.show()
  156. # if show_type=='lines':
  157. # keypoint_img=draw_keypoints((img * 255).to(torch.uint8),target['lines'],colors='red',width=3)
  158. # plt.imshow(keypoint_img.permute(1, 2, 0).numpy())
  159. # plt.show()
  160. if show_type == 'points':
  161. # print(f'points:{target['points'].shape}')
  162. keypoint_img = draw_keypoints((img * 255).to(torch.uint8), target['points'].unsqueeze(1), colors='red',
  163. width=3)
  164. plt.imshow(keypoint_img.permute(1, 2, 0).numpy())
  165. plt.show()
  166. if show_type == 'boxes':
  167. boxed_image = draw_bounding_boxes((img * 255).to(torch.uint8), target["boxes"],
  168. colors="yellow", width=1)
  169. plt.imshow(boxed_image.permute(1, 2, 0).numpy())
  170. plt.show()
  171. def show_img(self, img_path):
  172. pass
  173. def draw_el(all):
  174. # 解析椭圆参数
  175. if isinstance(all, torch.Tensor):
  176. all = all.cpu().numpy()
  177. x, y, a, b, q, q1, q2 = all
  178. theta = np.radians(q)
  179. phi1 = np.radians(q1) # 第一个点的参数角
  180. phi2 = np.radians(q2) # 第二个点的参数角
  181. # 生成椭圆上的点
  182. phi = np.linspace(0, 2 * np.pi, 500)
  183. x_ellipse = x + a * np.cos(phi) * np.cos(theta) - b * np.sin(phi) * np.sin(theta)
  184. y_ellipse = y + a * np.cos(phi) * np.sin(theta) + b * np.sin(phi) * np.cos(theta)
  185. # 计算两个指定点的坐标
  186. def param_to_point(phi, xc, yc, a, b, theta):
  187. x = xc + a * np.cos(phi) * np.cos(theta) - b * np.sin(phi) * np.sin(theta)
  188. y = yc + a * np.cos(phi) * np.sin(theta) + b * np.sin(phi) * np.cos(theta)
  189. return x, y
  190. P1 = param_to_point(phi1, x, y, a, b, theta)
  191. P2 = param_to_point(phi2, x, y, a, b, theta)
  192. # 创建画布并显示背景图片(使用传入的background_img,shape为[H, W, C])
  193. plt.figure(figsize=(10, 10))
  194. # plt.imshow(background_img) # 直接显示背景图
  195. # 绘制椭圆及相关元素
  196. plt.plot(x_ellipse, y_ellipse, 'b-', linewidth=2)
  197. plt.plot(x, y, 'ko', markersize=8)
  198. plt.plot(P1[0], P1[1], 'ro', markersize=10)
  199. plt.plot(P2[0], P2[1], 'go', markersize=10)
  200. plt.show()
  201. def arc_to_mask(arc7, shape, line_width=1):
  202. """
  203. Generate a binary mask of an elliptical arc.
  204. Args:
  205. xc, yc (float): 椭圆中心
  206. a, b (float): 长半轴、短半轴 (a >= b)
  207. theta (float): 椭圆旋转角度(**弧度**,逆时针,相对于 x 轴)
  208. phi1, phi2 (float): 起始和终止参数角(**弧度**,在 [0, 2π) 内)
  209. H, W (int): 输出 mask 的高度和宽度
  210. line_width (int): 弧线宽度(像素)
  211. Returns:
  212. mask (Tensor): [H, W], dtype=torch.uint8, 0/255
  213. """
  214. # print_params(arc7)
  215. # 确保 phi1 -> phi2 是正向(可处理跨 2π 的情况)
  216. if torch.all(arc7 == 0):
  217. return torch.zeros(shape, dtype=torch.uint8)
  218. print_params(arc7)
  219. xc, yc, a, b, theta, phi1, phi2 = arc7
  220. H, W = shape
  221. if phi2 < phi1:
  222. phi2 += 2 * np.pi
  223. # 生成参数角(足够密集,避免断线)
  224. num_points = max(int(200 * abs(phi2 - phi1) / (2 * np.pi)), 10)
  225. phi = np.linspace(phi1, phi2, num_points)
  226. # 椭圆参数方程(先在未旋转坐标系下计算)
  227. x_local = a * np.cos(phi)
  228. y_local = b * np.sin(phi)
  229. # 应用旋转和平移
  230. cos_t = np.cos(theta)
  231. sin_t = np.sin(theta)
  232. x_rot = x_local * cos_t - y_local * sin_t + xc
  233. y_rot = x_local * cos_t + y_local * sin_t + yc
  234. # 转为整数坐标(OpenCV 需要 int32)
  235. points = np.stack([x_rot, y_rot], axis=1).astype(np.int32)
  236. # 创建空白图像
  237. img = np.zeros((H, W), dtype=np.uint8)
  238. # 绘制折线(antialias=False 更适合 mask)
  239. cv2.polylines(img, [points], isClosed=False, color=255, thickness=line_width, lineType=cv2.LINE_AA)
  240. return torch.from_numpy(img).float() # [H, W], values: 0 or 255
  241. def compute_arc_angles(gt_mask_ends, gt_mask_params):
  242. """
  243. 给定椭圆上的一个点,计算其对应的参数角 phi(弧度)。
  244. Parameters:
  245. point: tuple or array-like, (x, y)
  246. ellipse_param: tuple or array-like, (xc, yc, a, b, theta)
  247. Returns:
  248. phi: float, in [0, 2*pi)
  249. """
  250. # print_params(gt_mask_ends, gt_mask_params)
  251. results = []
  252. if not isinstance(gt_mask_params, torch.Tensor):
  253. gt_mask_params_tensor = torch.tensor(gt_mask_params, dtype=gt_mask_ends.dtype, device=gt_mask_ends.device)
  254. else:
  255. gt_mask_params_tensor = gt_mask_params.clone().detach().to(gt_mask_ends)
  256. for ends_img, params_img in zip(gt_mask_ends, gt_mask_params_tensor):
  257. # print(f'params_img:{params_img}')
  258. if torch.norm(params_img) < 1e-6: # L2 norm near zero
  259. results.append(torch.zeros(2, device=params_img.device, dtype=params_img.dtype))
  260. continue
  261. x, y = ends_img
  262. xc, yc, a, b, theta = params_img
  263. # 1. 平移到中心
  264. dx = x - xc
  265. dy = y - yc
  266. # 2. 逆旋转(旋转 -theta)
  267. cos_t = torch.cos(theta)
  268. sin_t = torch.sin(theta)
  269. X = dx * cos_t + dy * sin_t
  270. Y = -dx * sin_t + dy * cos_t
  271. # 3. 归一化到单位圆(除以 a, b)
  272. cos_phi = X / a
  273. sin_phi = Y / b
  274. # 4. 用 atan2 求角度(自动处理象限)
  275. phi = torch.atan2(sin_phi, cos_phi)
  276. # 5. 转换到 [0, 2π)
  277. phi = torch.where(phi < 0, phi + 2 * torch.pi, phi)
  278. results.append(phi)
  279. return results
  280. def points_to_ellipse(points):
  281. """
  282. 根据提供的四个点估计椭圆参数。
  283. :param points: Tensor of shape (4, 2) 表示椭圆上的四个点
  284. :return: 返回 (cx, cy, r1, r2, orientation) 其中 cx, cy 是中心坐标,r1, r2 分别是长轴和短轴半径,orientation 是椭圆的方向(弧度)
  285. """
  286. # 转换为numpy数组进行计算
  287. pts = points.numpy()
  288. pts = pts.reshape(-1, 2)
  289. center = np.mean(pts, axis=0)
  290. A = np.hstack(
  291. [pts[:, 0:1] ** 2, pts[:, 0:1] * pts[:, 1:2], pts[:, 1:2] ** 2, pts[:, :2], np.ones((pts.shape[0], 1))])
  292. b = np.ones(pts.shape[0])
  293. x = np.linalg.lstsq(A, b, rcond=None)[0]
  294. # 解析解参见 https://en.wikipedia.org/wiki/Ellipse#General_ellipse
  295. a, b, c, d, f, g = x.ravel()
  296. numerator = 2 * (a * f * f + c * d * d + g * b * b - 2 * b * d * f - a * c * g)
  297. denominator1 = (b * b - a * c) * ((c - a) * np.sqrt(1 + 4 * b * b / ((a - c) * (a - c))) - (c + a))
  298. denominator2 = (b * b - a * c) * ((a - c) * np.sqrt(1 + 4 * b * b / ((a - c) * (a - c))) - (c + a))
  299. major_axis = np.sqrt(numerator / denominator1)
  300. minor_axis = np.sqrt(numerator / denominator2)
  301. distances = np.linalg.norm(pts - center, axis=1)
  302. long_axis_length = np.max(distances) * 2
  303. short_axis_length = np.min(distances) * 2
  304. orientation = np.arctan2(pts[1, 1] - pts[0, 1], pts[1, 0] - pts[0, 0])
  305. return center[0], center[1], long_axis_length / 2, short_axis_length / 2, orientation
  306. def generate_ellipse_mask(shape, ellipse_params):
  307. """
  308. 在指定形状的图像上生成椭圆mask。
  309. :param shape: 输出mask的形状 (HxW)
  310. :param ellipse_params: 椭圆参数 (cx, cy, rx, ry, orientation)
  311. :return: 椭圆mask
  312. """
  313. cx, cy, rx, ry, orientation = ellipse_params
  314. img = np.zeros(shape, dtype=np.uint8)
  315. cx, cy, rx, ry = int(cx), int(cy), int(rx), int(ry)
  316. rr, cc = ellipse(cy, cx, ry, rx, shape)
  317. img[rr, cc] = 1
  318. return img
  319. def sort_points_clockwise(points):
  320. points = np.array(points)
  321. top_left_idx = np.lexsort((points[:, 0], points[:, 1]))[0]
  322. reference_point = points[top_left_idx]
  323. def angle_to_reference(point):
  324. return np.arctan2(point[1] - reference_point[1], point[0] - reference_point[0])
  325. angles = np.apply_along_axis(angle_to_reference, 1, points)
  326. angles[angles < 0] += 2 * np.pi
  327. sorted_indices = np.argsort(angles)
  328. sorted_points = points[sorted_indices]
  329. return sorted_points.tolist()
  330. def get_boxes_lines(objs, shape):
  331. boxes = []
  332. labels = []
  333. h, w = shape
  334. line_point_pairs = []
  335. points = []
  336. mask_ends = []
  337. mask_params = []
  338. for obj in objs:
  339. # plt.plot([a[1], b[1]], [a[0], b[0]], c="red", linewidth=1) # a[1], b[1]无明确大小
  340. # print(f"points:{obj['points']}")
  341. label = obj['label']
  342. if label == 'line' or label == 'dseam1':
  343. a, b = obj['points'][0], obj['points'][1]
  344. # line_point_pairs.append(a)
  345. # line_point_pairs.append(b)
  346. line_point_pairs.append([a, b])
  347. xmin = max(0, (min(a[0], b[0]) - 6))
  348. xmax = min(w, (max(a[0], b[0]) + 6))
  349. ymin = max(0, (min(a[1], b[1]) - 6))
  350. ymax = min(h, (max(a[1], b[1]) + 6))
  351. boxes.append([xmin, ymin, xmax, ymax])
  352. labels.append(torch.tensor(2))
  353. points.append(torch.tensor([0.0]))
  354. mask_ends.append([[0, 0], [0, 0]])
  355. mask_params.append([0, 0, 0, 0, 0])
  356. # circle_4points.append([[0, 0], [0, 0], [0, 0], [0, 0]])
  357. elif label == 'point':
  358. p = obj['points'][0]
  359. xmin = max(0, p[0] - 12)
  360. xmax = min(w, p[0] + 12)
  361. ymin = max(0, p[1] - 12)
  362. ymax = min(h, p[1] + 12)
  363. points.append(p)
  364. labels.append(torch.tensor(1))
  365. boxes.append([xmin, ymin, xmax, ymax])
  366. line_point_pairs.append([[0, 0], [0, 0]])
  367. mask_ends.append([[0, 0], [0, 0]])
  368. mask_params.append([0, 0, 0, 0, 0])
  369. # circle_4points.append([[0, 0], [0, 0], [0, 0], [0, 0]])
  370. # elif label == 'arc':
  371. # arc_points = obj['points']
  372. # arc_params = obj['params']
  373. # arc_ends = obj['ends']
  374. # line_mask.append(arc_points)
  375. # mask_ends.append(arc_ends)
  376. # mask_params.append(arc_params)
  377. #
  378. # xs = [p[0] for p in arc_points]
  379. # ys = [p[1] for p in arc_points]
  380. # xmin, xmax = min(xs), max(xs)
  381. # ymin, ymax = min(ys), max(ys)
  382. #
  383. # boxes.append([xmin, ymin, xmax, ymax])
  384. # labels.append(torch.tensor(3))
  385. #
  386. # points.append(torch.tensor([0.0]))
  387. # line_point_pairs.append([[0, 0], [0, 0]])
  388. # circle_4points.append([[0, 0], [0, 0], [0, 0], [0, 0]])
  389. elif label == 'arc':
  390. arc_params = obj['params']
  391. arc_ends = obj['ends']
  392. mask_ends.append(arc_ends)
  393. mask_params.append(arc_params)
  394. arc3points = obj['points']
  395. xs = [p[0] for p in arc3points]
  396. ys = [p[1] for p in arc3points]
  397. xmin_raw = min(xs)
  398. xmax_raw = max(xs)
  399. ymin_raw = min(ys)
  400. ymax_raw = max(ys)
  401. xmin = max(xmin_raw - 40, 0)
  402. xmax = min(xmax_raw + 40, w)
  403. ymin = max(ymin_raw - 40, 0)
  404. ymax = min(ymax_raw + 40, h)
  405. boxes.append([xmin, ymin, xmax, ymax])
  406. labels.append(torch.tensor(4))
  407. points.append(torch.tensor([0.0]))
  408. line_point_pairs.append([[0, 0], [0, 0]])
  409. boxes = torch.tensor(boxes, dtype=torch.float32)
  410. print(f'boxes:{boxes.shape}')
  411. labels = torch.tensor(labels)
  412. if points:
  413. points = torch.tensor(points, dtype=torch.float32)
  414. else:
  415. points = None
  416. if line_point_pairs:
  417. line_point_pairs = torch.tensor(line_point_pairs, dtype=torch.float32)
  418. else:
  419. line_point_pairs = None
  420. if mask_ends:
  421. mask_ends = torch.tensor(mask_ends, dtype=torch.float32)
  422. else:
  423. mask_ends = None
  424. if mask_params:
  425. mask_params = torch.tensor(mask_params, dtype=torch.float32)
  426. else:
  427. mask_params = None
  428. return boxes, line_point_pairs, points, labels, mask_ends, mask_params
  429. if __name__ == '__main__':
  430. path = r'/data/share/zyh/master_dataset/pokou/251115/a_dataset_pokou_mask'
  431. dataset = LineDataset(dataset_path=path, dataset_type='train', augmentation=False, data_type='jpg')
  432. dataset.show(9, show_type='circle_masks')