backbone_factory.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320
  1. from collections import OrderedDict
  2. import torchvision
  3. from torchvision.models import maxvit_t
  4. from torchvision.models.detection.backbone_utils import BackboneWithFPN
  5. from libs.vision_libs import models
  6. from libs.vision_libs.models import mobilenet_v3_large, EfficientNet_V2_S_Weights, efficientnet_v2_s, \
  7. EfficientNet_V2_M_Weights, efficientnet_v2_m, EfficientNet_V2_L_Weights, efficientnet_v2_l, ConvNeXt_Base_Weights
  8. from libs.vision_libs.models._utils import _ovewrite_value_param, handle_legacy_interface
  9. from libs.vision_libs.models.detection import FasterRCNN
  10. from libs.vision_libs.models.detection.anchor_utils import AnchorGenerator
  11. from libs.vision_libs.models.detection.ssdlite import _mobilenet_extractor
  12. from libs.vision_libs.models.resnet import resnet50, ResNet50_Weights, resnet18
  13. from libs.vision_libs.models.detection.backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers
  14. from libs.vision_libs.ops import misc as misc_nn_ops, MultiScaleRoIAlign
  15. from torch import nn
  16. import torch
  17. def get_resnet50_fpn():
  18. is_trained = False
  19. trainable_backbone_layers = _validate_trainable_layers(is_trained, None, 5, 3)
  20. norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d
  21. backbone = resnet50(weights=None, progress=True, norm_layer=norm_layer)
  22. backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers)
  23. return backbone
  24. def get_resnet18_fpn():
  25. is_trained = False
  26. trainable_backbone_layers = _validate_trainable_layers(is_trained, None, 5, 3)
  27. norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d
  28. backbone = resnet18(weights=None, progress=True, norm_layer=norm_layer)
  29. backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers)
  30. return backbone
  31. def get_mobilenet_v3_large_fpn():
  32. is_trained = False
  33. trainable_backbone_layers = _validate_trainable_layers(is_trained, None, 6, 3)
  34. norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d
  35. backbone = mobilenet_v3_large(weights=None, progress=True, norm_layer=norm_layer)
  36. backbone = _mobilenet_extractor(backbone, True, trainable_backbone_layers)
  37. return backbone
  38. def get_convnext_fpn():
  39. convnext = models.convnext_base(weights=ConvNeXt_Base_Weights.DEFAULT)
  40. # convnext = models.convnext_small(pretrained=True)
  41. # convnext = models.convnext_large(pretrained=True)
  42. in_channels_list = [128, 256, 512, 1024]
  43. backbone_with_fpn = BackboneWithFPN(
  44. convnext.features,
  45. return_layers={'1': '0', '3': '1', '5': '2', '7': '3'}, # 确保这些键对应到实际的层
  46. in_channels_list=in_channels_list,
  47. out_channels=256
  48. )
  49. return backbone_with_fpn
  50. def get_maxvit_fpn(input_size=(224*7,224*7)):
  51. maxvit = MaxVitBackbone(input_size=input_size)
  52. # print(maxvit.named_children())
  53. # for i,layer in enumerate(maxvit.named_children()):
  54. # print(f'layer:{i}:{layer}')
  55. test_input = torch.randn(1, 3, 224 * 7, 224 * 7)
  56. in_channels_list = [64, 64, 128, 256, 512]
  57. featmap_names = ['0', '1', '2', '3', '4', 'pool']
  58. # print(f'featmap_names:{featmap_names}')
  59. roi_pooler = MultiScaleRoIAlign(
  60. featmap_names=featmap_names,
  61. output_size=7,
  62. sampling_ratio=2
  63. )
  64. backbone_with_fpn = BackboneWithFPN(
  65. maxvit,
  66. return_layers={'stem': '0', 'block0': '1', 'block1': '2', 'block2': '3', 'block3': '4'}, # 确保这些键对应到实际的层
  67. in_channels_list=in_channels_list,
  68. out_channels=256
  69. )
  70. rpn_anchor_generator = get_anchor_generator(backbone_with_fpn, test_input=test_input),
  71. return backbone_with_fpn,rpn_anchor_generator,roi_pooler
  72. def get_efficientnetv2_fpn(name='efficientnet_v2_m', pretrained=True):
  73. # 加载EfficientNetV2模型
  74. if name == 'efficientnet_v2_s':
  75. weights = EfficientNet_V2_S_Weights.IMAGENET1K_V1 if pretrained else None
  76. backbone = efficientnet_v2_s(weights=weights).features
  77. if name == 'efficientnet_v2_m':
  78. weights = EfficientNet_V2_M_Weights.IMAGENET1K_V1 if pretrained else None
  79. backbone = efficientnet_v2_m(weights=weights).features
  80. if name == 'efficientnet_v2_l':
  81. weights = EfficientNet_V2_L_Weights.IMAGENET1K_V1 if pretrained else None
  82. backbone = efficientnet_v2_l(weights=weights).features
  83. # 定义返回的层索引和名称
  84. return_layers = {"2": "0", "3": "1", "4": "2", "5": "3"}
  85. # 获取每个层输出通道数
  86. in_channels_list = []
  87. for layer_idx in [2, 3, 4, 5]:
  88. module = backbone[layer_idx]
  89. if hasattr(module, 'out_channels'):
  90. in_channels_list.append(module.out_channels)
  91. elif hasattr(module[-1], 'out_channels'):
  92. # 如果module本身没有out_channels,检查最后一个子模块
  93. in_channels_list.append(module[-1].out_channels)
  94. else:
  95. raise ValueError(f"Cannot determine out_channels for layer {layer_idx}")
  96. # 使用BackboneWithFPN包装backbone
  97. backbone_with_fpn = BackboneWithFPN(
  98. backbone=backbone,
  99. return_layers=return_layers,
  100. in_channels_list=in_channels_list,
  101. out_channels=256
  102. )
  103. return backbone_with_fpn
  104. # 加载 ConvNeXt 模型
  105. # convnext = models.convnext_base(pretrained=True)
  106. # convnext = models.convnext_tiny(pretrained=True)
  107. # convnext = models.convnext_small(pretrained=True)
  108. # print(convnext)
  109. # # 打印模型的所有命名层
  110. # for name, _ in convnext.features[5].named_children():
  111. # print(name)
  112. # 修改 ConvNeXt 以适应 Faster R-CNN
  113. # 修改 ConvNeXt 以适应 Faster R-CNN
  114. def get_anchor_generator(backbone, test_input):
  115. features = backbone(test_input) # 获取 backbone 输出的所有特征图
  116. featmap_names = list(features.keys())
  117. print(f'featmap_names:{featmap_names}')
  118. num_features = len(features) # 特征图数量
  119. print(f'num_features:{num_features}')
  120. # num_features=num_features-1
  121. # # 定义每层的 anchor 尺寸和比例
  122. # base_sizes = [32, 64, 128] # 支持最多 4 层
  123. # sizes = tuple((size,) for size in base_sizes[:num_features])
  124. anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
  125. print(f'anchor_sizes:{anchor_sizes }')
  126. aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
  127. print(f'aspect_ratios:{aspect_ratios}')
  128. return AnchorGenerator(sizes=anchor_sizes , aspect_ratios=aspect_ratios)
  129. class MaxVitBackbone(torch.nn.Module):
  130. def __init__(self,input_size=(224*7,224*7)):
  131. super(MaxVitBackbone, self).__init__()
  132. # 提取MaxVit的部分层作为特征提取器
  133. maxvit_model =maxvit_t(pretrained=False,input_size=input_size)
  134. self.stem = maxvit_model.stem # Stem层
  135. self.block0= maxvit_model.blocks[0]
  136. self.block1 = maxvit_model.blocks[1]
  137. self.block2 = maxvit_model.blocks[2]
  138. self.block3 = maxvit_model.blocks[3]
  139. def forward(self, x):
  140. print("Input size:", x.shape)
  141. x = self.stem(x)
  142. print("After stem size:", x.shape)
  143. x = self.block0(x)
  144. print("After block0 size:", x.shape)
  145. x = self.block1(x)
  146. print("After block1 size:", x.shape)
  147. x = self.block2(x)
  148. print("After block2 size:", x.shape)
  149. x = self.block3(x)
  150. print("After block3 size:", x.shape)
  151. return x
  152. from torchvision.models.feature_extraction import create_feature_extractor
  153. def get_swin_transformer_fpn(type='t'):
  154. class Trans(nn.Module):
  155. def __init__(self):
  156. super().__init__()
  157. def forward(self,x):
  158. x=x.permute(0, 3, 2, 1).contiguous()
  159. return x
  160. class SwinTransformer(nn.Module):
  161. def __init__(self,type='t'):
  162. super().__init__()
  163. swin = torchvision.models.swin_v2_t(weights=None)
  164. if type=='t':
  165. # 加载 Swin Transformer v2 Tiny
  166. swin = torchvision.models.swin_v2_t(weights=None)
  167. if type=='s':
  168. swin=torchvision.models.swin_v2_s(weights=None)
  169. if type=='b':
  170. swin=torchvision.models.swin_v2_b(weights=None)
  171. for i,layer in enumerate(swin.named_children()):
  172. print(f'layer{i}:,{layer}')
  173. # 保存需要提取的层
  174. self.layer0 = swin.features[0] # 第0层 patch embedding
  175. self.layer1 =nn.Sequential(swin.features[1],Trans()) # 第1层 stage1
  176. self.layer2 =nn.Sequential(Trans(),swin.features[2]) # 第2层 downsample
  177. self.layer3 =nn.Sequential(swin.features[3], Trans()) # 第3层 stage2
  178. self.layer4 =nn.Sequential( Trans(),swin.features[4]) # 第4层 downsample
  179. self.layer5 =nn.Sequential(swin.features[5], Trans()) # 第5层 stage3
  180. self.layer6 =nn.Sequential(Trans(),swin.features[6]) # 第6层 downsample
  181. self.layer7 =nn.Sequential(swin.features[7], Trans()) # 第7层 stage4
  182. def forward(self, x):
  183. x = self.layer0(x) # [B, C, H, W] -> [B, H_, W_, C]
  184. print(f'x0:{x.shape}')
  185. x = self.layer1(x)
  186. print(f'x1:{x.shape}')
  187. x = self.layer2(x)
  188. x = self.layer3(x)
  189. print(f'x2:{x.shape}')
  190. x = self.layer4(x)
  191. x = self.layer5(x)
  192. print(f'x3:{x.shape}')
  193. x = self.layer6(x)
  194. x = self.layer7(x)
  195. print(f'x4:{x.shape}')
  196. return x
  197. backbone = SwinTransformer(type=type)
  198. input=torch.randn(1,3,512,512)
  199. out=backbone(input)
  200. # print(f'out:{out.keys()}')
  201. # for i,layer in enumerate(swin.features.named_children()):
  202. # print(f'layer:{i}:{layer}')
  203. # out=swin(input)
  204. # print(f'out shape:{out.shape}')
  205. #
  206. channels_list = [96, 192, 384, 768]
  207. if type=='t':
  208. channels_list = [96, 192, 384, 768]
  209. if type=='s':
  210. channels_list = [96, 192, 384, 768]
  211. if type=='b':
  212. channels_list = [128, 256, 512, 1024]
  213. backbone_with_fpn = BackboneWithFPN(
  214. # swin.features,
  215. backbone,
  216. return_layers={'layer1': '0', 'layer3': '1', 'layer5': '2', 'layer7': '3'},
  217. in_channels_list=channels_list,
  218. out_channels=256
  219. )
  220. featmap_names = ['0', '1', '2', '3', 'pool']
  221. # print(f'featmap_names:{featmap_names}')
  222. roi_pooler = MultiScaleRoIAlign(
  223. featmap_names=featmap_names,
  224. output_size=7,
  225. sampling_ratio=2
  226. )
  227. # out=backbone_with_fpn(input)
  228. anchor_generator = get_anchor_generator(backbone_with_fpn, test_input=input)
  229. # print(f'out:{out}')
  230. return backbone_with_fpn,roi_pooler,anchor_generator
  231. if __name__ == '__main__':
  232. backbone_with_fpn, roi_pooler, anchor_generator=get_swin_transformer_fpn(type='s')
  233. model=FasterRCNN(backbone=backbone_with_fpn,num_classes=3,box_roi_pool=roi_pooler,rpn_anchor_generator=anchor_generator)
  234. input=torch.randn(3,3,512,512,device='cuda')
  235. model.eval()
  236. model.to('cuda')
  237. out=model(input)
  238. # # maxvit = models.maxvit_t(pretrained=True)
  239. # maxvit=MaxVitBackbone()
  240. # # print(maxvit.named_children())
  241. #
  242. # for i,layer in enumerate(maxvit.named_children()):
  243. # print(f'layer:{i}:{layer}')
  244. #
  245. # in_channels_list = [64,64,128, 256, 512]
  246. # backbone_with_fpn = BackboneWithFPN(
  247. # maxvit,
  248. # return_layers={'stem': '0','block0':'1','block1':'2','block2':'3','block3':'4'}, # 确保这些键对应到实际的层
  249. # in_channels_list=in_channels_list,
  250. # out_channels=256
  251. # )
  252. # model = FasterRCNN(
  253. # backbone=backbone_with_fpn,
  254. # num_classes=91, # COCO 数据集有 91 类
  255. # # rpn_anchor_generator=anchor_generator,
  256. # # box_roi_pool=roi_pooler
  257. # )
  258. #
  259. # test_input = torch.randn(1, 3, 896, 896)
  260. #
  261. # with torch.no_grad():
  262. # output = backbone_with_fpn(test_input)
  263. #
  264. # print("Output feature maps:")
  265. # for k, v in output.items():
  266. # print(f"{k}: {v.shape}")
  267. # model.eval()
  268. # output=model(test_input)