| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699 |
- import os
- from typing import Any, Callable, List, Optional, Tuple
- import torch
- from torch import nn
- from libs.vision_libs.models.detection.anchor_utils import AnchorGenerator
- from libs.vision_libs.models.detection.rpn import RPNHead, RegionProposalNetwork
- from libs.vision_libs.models.detection.transform import GeneralizedRCNNTransform
- from libs.vision_libs.ops import misc as misc_nn_ops, MultiScaleRoIAlign
- from libs.vision_libs.models.detection.backbone_utils import BackboneWithFPN, resnet_fpn_backbone
- from libs.vision_libs.models.detection.faster_rcnn import TwoMLPHead
- from models.line_detect.heads.arc.arc_heads import ArcHeads
- from models.line_detect.heads.circle.circle_heads import CircleHeads, CirclePredictor
- from .heads.decoder import FPNDecoder
- from models.line_detect.heads.line.line_heads import LinePredictor
- from models.line_detect.heads.point.point_heads import PointHeads, PointPredictor
- from .loi_heads import RoIHeads
- from .trainer import Trainer
- from ..base.backbone_factory import get_anchor_generator, MaxVitBackbone, \
- get_swin_transformer_fpn, get_efficientnetv2_fpn
- # from ..base.backbone_factory import get_convnext_fpn, get_anchor_generator
- from ..base.base_detection_net import BaseDetectionNet
- import torch.nn.functional as F
- from ..base.high_reso_maxvit import maxvit_with_fpn
- from ..base.high_reso_resnet import resnet50fpn, resnet18fpn, resnet101fpn, Bottleneck
- __all__ = [
- "LineDetect",
- "linedetect_resnet50_fpn",
- ]
- from ..line_net.line_detect import LineHeads
- def _default_anchorgen():
- anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
- aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
- return AnchorGenerator(anchor_sizes, aspect_ratios)
- class LineDetect(BaseDetectionNet):
- def __init__(
- self,
- backbone,
- num_classes=3,
- # transform parameters
- min_size=512,
- max_size=512,
- image_mean=None,
- image_std=None,
- # RPN parameters
- rpn_anchor_generator=None,
- rpn_head=None,
- rpn_pre_nms_top_n_train=2000,
- rpn_pre_nms_top_n_test=1000,
- rpn_post_nms_top_n_train=2000,
- rpn_post_nms_top_n_test=1000,
- rpn_nms_thresh=0.7,
- rpn_fg_iou_thresh=0.7,
- rpn_bg_iou_thresh=0.3,
- rpn_batch_size_per_image=256,
- rpn_positive_fraction=0.5,
- rpn_score_thresh=0.0,
- # Box parameters
- box_roi_pool=None,
- box_head=None,
- box_predictor=None,
- box_score_thresh=0.05,
- box_nms_thresh=0.5,
- box_detections_per_img=200,
- box_fg_iou_thresh=0.5,
- box_bg_iou_thresh=0.5,
- box_batch_size_per_image=512,
- box_positive_fraction=0.25,
- bbox_reg_weights=None,
- # line parameters
- line_roi_pool=None,
- line_head=None,
- line_predictor=None,
- # point parameters
- point_roi_pool=None,
- point_head=None,
- point_predictor=None,
- circle_head=None,
- circle_predictor=None,
- circle_roi_pool=None,
- # arc parameters
- arc_roi_pool=None,
- arc_head=None,
- arc_predictor=None,
- num_points=4,
- detect_point=False,
- detect_line=False,
- detect_arc=True,
- detect_circle=False,
- **kwargs,
- ):
- out_channels = backbone.out_channels
- if rpn_anchor_generator is None:
- rpn_anchor_generator = _default_anchorgen()
- if rpn_head is None:
- rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
- rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
- rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)
- rpn = RegionProposalNetwork(
- rpn_anchor_generator,
- rpn_head,
- rpn_fg_iou_thresh,
- rpn_bg_iou_thresh,
- rpn_batch_size_per_image,
- rpn_positive_fraction,
- rpn_pre_nms_top_n,
- rpn_post_nms_top_n,
- rpn_nms_thresh,
- score_thresh=rpn_score_thresh,
- )
- if box_roi_pool is None:
- box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2)
- if box_head is None:
- resolution = box_roi_pool.output_size[0]
- representation_size = 1024
- box_head = TwoMLPHead(out_channels * resolution**2, representation_size)
- if box_predictor is None:
- representation_size = 1024
- box_predictor = ObjectionPredictor(representation_size, num_classes)
- roi_heads = RoIHeads(
- # Box
- box_roi_pool,
- box_head,
- box_predictor,
- box_fg_iou_thresh,
- box_bg_iou_thresh,
- box_batch_size_per_image,
- box_positive_fraction,
- bbox_reg_weights,
- box_score_thresh,
- box_nms_thresh,
- box_detections_per_img,
- detect_point=detect_point,
- detect_line=detect_line,
- detect_arc=detect_arc,
- detect_circle=detect_circle,
- )
- if image_mean is None:
- image_mean = [0.485, 0.456, 0.406]
- if image_std is None:
- image_std = [0.229, 0.224, 0.225]
- transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std, **kwargs)
- super().__init__(backbone, rpn, roi_heads, transform)
- if line_head is None and detect_line:
- layers = tuple(num_points for _ in range(8))
- line_head = LineHeads(8, layers)
- if line_predictor is None and detect_line:
- # keypoint_dim_reduced = 512 # == keypoint_layers[-1]
- line_predictor = LinePredictor(in_channels=256)
- if point_head is None and detect_point:
- layers = tuple(num_points for _ in range(8))
- point_head = PointHeads(8, layers)
- if point_predictor is None and detect_point:
- # keypoint_dim_reduced = 512 # == keypoint_layers[-1]
- point_predictor = PointPredictor(in_channels=256)
- if detect_arc and arc_head is None:
- layers = tuple(num_points for _ in range(8))
- arc_head=ArcHeads(8,layers)
- if detect_arc and arc_predictor is None:
- layers = tuple(num_points for _ in range(8))
- # arc_predictor=ArcPredictor(in_channels=256,out_channels=1)
- arc_predictor=FPNDecoder(Bottleneck)
- if detect_circle and circle_head is None:
- layers = tuple(num_points for _ in range(8))
- circle_head = CircleHeads(8, layers)
- if detect_circle and circle_predictor is None:
- layers = tuple(num_points for _ in range(8))
- # arc_predictor=ArcPredictor(in_channels=256,out_channels=1)
- # circle_predictor = CirclePredictor(in_channels=256,out_channels=4)
- circle_predictor=FPNDecoder(Bottleneck)
- self.roi_heads.line_roi_pool = line_roi_pool
- self.roi_heads.line_head = line_head
- self.roi_heads.line_predictor = line_predictor
- self.roi_heads.point_roi_pool = point_roi_pool
- self.roi_heads.point_head = point_head
- self.roi_heads.point_predictor = point_predictor
- self.roi_heads.arc_roi_pool = arc_roi_pool
- self.roi_heads.arc_head = arc_head
- self.roi_heads.arc_predictor = arc_predictor
- self.roi_heads.circle_roi_pool = circle_roi_pool
- self.roi_heads.circle_head = circle_head
- self.roi_heads.circle_predictor = circle_predictor
- def start_train(self, cfg):
- # cfg = read_yaml(cfg)
- self.trainer = Trainer()
- self.trainer.train_from_cfg(model=self, cfg=cfg)
- def load_weights(self, save_path, device='cuda'):
- if os.path.exists(save_path):
- checkpoint = torch.load(save_path, map_location=device)
- self.load_state_dict(checkpoint['model_state_dict'])
- # if optimizer is not None:
- # optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
- # epoch = checkpoint['epoch']
- # loss = checkpoint['loss']
- # print(f"Loaded best model from {save_path} at epoch {epoch} with loss {loss:.4f}")
- print(f"Loaded model from {save_path}")
- else:
- print(f"No saved model found at {save_path}")
- return self
- class TwoMLPHead(nn.Module):
- """
- Standard heads for FPN-based models
- Args:
- in_channels (int): number of input channels
- representation_size (int): size of the intermediate representation
- """
- def __init__(self, in_channels, representation_size):
- super().__init__()
- self.fc6 = nn.Linear(in_channels, representation_size)
- self.fc7 = nn.Linear(representation_size, representation_size)
- def forward(self, x):
- x = x.flatten(start_dim=1)
- x = F.relu(self.fc6(x))
- x = F.relu(self.fc7(x))
- return x
- class ObjectionConvFCHead(nn.Sequential):
- def __init__(
- self,
- input_size: Tuple[int, int, int],
- conv_layers: List[int],
- fc_layers: List[int],
- norm_layer: Optional[Callable[..., nn.Module]] = None,
- ):
- """
- Args:
- input_size (Tuple[int, int, int]): the input size in CHW format.
- conv_layers (list): feature dimensions of each Convolution layer
- fc_layers (list): feature dimensions of each FCN layer
- norm_layer (callable, optional): Module specifying the normalization layer to use. Default: None
- """
- in_channels, in_height, in_width = input_size
- blocks = []
- previous_channels = in_channels
- for current_channels in conv_layers:
- blocks.append(misc_nn_ops.Conv2dNormActivation(previous_channels, current_channels, norm_layer=norm_layer))
- previous_channels = current_channels
- blocks.append(nn.Flatten())
- previous_channels = previous_channels * in_height * in_width
- for current_channels in fc_layers:
- blocks.append(nn.Linear(previous_channels, current_channels))
- blocks.append(nn.ReLU(inplace=True))
- previous_channels = current_channels
- super().__init__(*blocks)
- for layer in self.modules():
- if isinstance(layer, nn.Conv2d):
- nn.init.kaiming_normal_(layer.weight, mode="fan_out", nonlinearity="relu")
- if layer.bias is not None:
- nn.init.zeros_(layer.bias)
- class ObjectionPredictor(nn.Module):
- """
- Standard classification + bounding box regression layers
- for Fast R-CNN.
- Args:
- in_channels (int): number of input channels
- num_classes (int): number of output classes (including background)
- """
- def __init__(self, in_channels, num_classes):
- super().__init__()
- self.cls_score = nn.Linear(in_channels, num_classes)
- self.bbox_pred = nn.Linear(in_channels, num_classes * 4)
- def forward(self, x):
- if x.dim() == 4:
- torch._assert(
- list(x.shape[2:]) == [1, 1],
- f"x has the wrong shape, expecting the last two dimensions to be [1,1] instead of {list(x.shape[2:])}",
- )
- x = x.flatten(start_dim=1)
- scores = self.cls_score(x)
- bbox_deltas = self.bbox_pred(x)
- return scores, bbox_deltas
- def linedetect_newresnet18fpn(
- *,
- num_classes: Optional[int] = None,
- num_points:Optional[int] = None,
- **kwargs: Any,
- ) -> LineDetect:
- # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
- # weights_backbone = ResNet50_Weights.verify(weights_backbone)
- if num_classes is None:
- num_classes = 5
- if num_points is None:
- num_points = 4
- size=768
- backbone =resnet18fpn()
- featmap_names=['0', '1', '2', '3','4','pool']
- # print(f'featmap_names:{featmap_names}')
- roi_pooler = MultiScaleRoIAlign(
- featmap_names=featmap_names,
- output_size=7,
- sampling_ratio=2
- )
- num_features=len(featmap_names)
- anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
- # print(f'anchor_sizes:{anchor_sizes}')
- aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
- # print(f'aspect_ratios:{aspect_ratios}')
- anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
- model = LineDetect(backbone,
- num_classes,min_size=size,max_size=size, num_points=num_points,
- rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler,
- detect_point=False,
- detect_line=False,
- detect_arc=False,
- detect_circle=True,
- **kwargs)
- return model
- def linedetect_newresnet50fpn(
- *,
- num_classes: Optional[int] = None,
- num_points:Optional[int] = None,
- **kwargs: Any,
- ) -> LineDetect:
- # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
- # weights_backbone = ResNet50_Weights.verify(weights_backbone)
- if num_classes is None:
- num_classes = 5
- if num_points is None:
- num_points = 4
- size=768
- backbone =resnet50fpn(out_channels=256)
- featmap_names=['0', '1', '2', '3','4','pool']
- # print(f'featmap_names:{featmap_names}')
- roi_pooler = MultiScaleRoIAlign(
- featmap_names=featmap_names,
- output_size=7,
- sampling_ratio=2
- )
- num_features=len(featmap_names)
- anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
- # print(f'anchor_sizes:{anchor_sizes}')
- aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
- # print(f'aspect_ratios:{aspect_ratios}')
- anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
- model = LineDetect(backbone, num_classes,min_size=size,max_size=size, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler,
- detect_point=False,
- detect_line=False,
- detect_arc=False,
- detect_circle=True,
- **kwargs)
- return model
- def linedetect_newresnet101fpn(
- *,
- num_classes: Optional[int] = None,
- num_points:Optional[int] = None,
- **kwargs: Any,
- ) -> LineDetect:
- # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
- # weights_backbone = ResNet50_Weights.verify(weights_backbone)
- if num_classes is None:
- num_classes = 5
- if num_points is None:
- num_points = 3
- size=768
- backbone =resnet101fpn(out_channels=256)
- featmap_names=['0', '1', '2', '3','4','pool']
- # print(f'featmap_names:{featmap_names}')
- roi_pooler = MultiScaleRoIAlign(
- featmap_names=featmap_names,
- output_size=7,
- sampling_ratio=2
- )
- num_features=len(featmap_names)
- anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
- # print(f'anchor_sizes:{anchor_sizes}')
- aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
- # print(f'aspect_ratios:{aspect_ratios}')
- anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
- model = LineDetect(backbone, num_classes,min_size=size,max_size=size, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler,
- detect_point=False,
- detect_line=False,
- detect_arc=False,
- detect_circle=True,
- **kwargs)
- return model
- def linedetect_newresnet152fpn(
- *,
- num_classes: Optional[int] = None,
- num_points:Optional[int] = None,
- **kwargs: Any,
- ) -> LineDetect:
- # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
- # weights_backbone = ResNet50_Weights.verify(weights_backbone)
- if num_classes is None:
- num_classes = 5
- if num_points is None:
- num_points = 3
- size=768
- backbone =resnet101fpn(out_channels=256)
- featmap_names=['0', '1', '2', '3','4','pool']
- # print(f'featmap_names:{featmap_names}')
- roi_pooler = MultiScaleRoIAlign(
- featmap_names=featmap_names,
- output_size=7,
- sampling_ratio=2
- )
- num_features=len(featmap_names)
- anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小
- # print(f'anchor_sizes:{anchor_sizes}')
- aspect_ratios = ((0.5, 1.0, 2.0),) * num_features
- # print(f'aspect_ratios:{aspect_ratios}')
- anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
- model = LineDetect(backbone, num_classes,min_size=size,max_size=size, num_points=num_points, rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler,
- detect_point=False,
- detect_line=False,
- detect_arc=False,
- detect_circle=True,
- **kwargs)
- return model
- def linedetect_efficientnet(
- *,
- num_classes: Optional[int] = None,
- num_points:Optional[int] = None,
- name: Optional[str] = 'efficientnet_v2_l',
- **kwargs: Any,
- ) -> LineDetect:
- # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
- # weights_backbone = ResNet50_Weights.verify(weights_backbone)
- if num_classes is None:
- num_classes = 5
- if num_points is None:
- num_points = 3
- size=224*3
- featmap_names = ['0', '1', '2', '3', '4', 'pool']
- roi_pooler = MultiScaleRoIAlign(
- featmap_names=featmap_names,
- output_size=7,
- sampling_ratio=2
- )
- backbone_with_fpn=get_efficientnetv2_fpn(name=name)
- test_input = torch.randn(1, 3,size,size)
- model = LineDetect(
- backbone=backbone_with_fpn,
- min_size=size,
- max_size=size,
- num_classes=num_classes, # COCO æ°æ®éæ 91 ç±»
- rpn_anchor_generator=get_anchor_generator(backbone_with_fpn, test_input=test_input),
- box_roi_pool=roi_pooler,
- detect_line=False,
- detect_point=False,
- detect_arc=False,
- detect_circle=True,
- )
- return model
- def linedetect_maxvitfpn(
- *,
- num_classes: Optional[int] = None,
- num_points:Optional[int] = None,
- **kwargs: Any,
- ) -> LineDetect:
- # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
- # weights_backbone = ResNet50_Weights.verify(weights_backbone)
- if num_classes is None:
- num_classes = 5
- if num_points is None:
- num_points = 3
- size=224*3
- maxvit = MaxVitBackbone(input_size=(size,size))
- # print(maxvit.named_children())
- # for i,layer in enumerate(maxvit.named_children()):
- # print(f'layer:{i}:{layer}')
- in_channels_list = [64, 64, 128, 256, 512]
- featmap_names = ['0', '1', '2', '3', '4', 'pool']
- roi_pooler = MultiScaleRoIAlign(
- featmap_names=featmap_names,
- output_size=7,
- sampling_ratio=2
- )
- backbone_with_fpn = BackboneWithFPN(
- maxvit,
- return_layers={'stem': '0', 'block0': '1', 'block1': '2', 'block2': '3', 'block3': '4'},
- # ç¡®ä¿è¿äºé®å¯¹åºå°å®é
çå±
- in_channels_list=in_channels_list,
- out_channels=256
- )
- test_input = torch.randn(1, 3,size,size)
- model = LineDetect(
- backbone=backbone_with_fpn,
- min_size=size,
- max_size=size,
- num_classes=num_classes, # COCO æ°æ®éæ 91 ç±»
- rpn_anchor_generator=get_anchor_generator(backbone_with_fpn, test_input=test_input),
- box_roi_pool=roi_pooler,
- detect_line=False,
- detect_point=False,
- detect_arc=False,
- detect_circle=True,
- )
- return model
- def linedetect_high_maxvitfpn(
- *,
- num_classes: Optional[int] = None,
- num_points:Optional[int] = None,
- **kwargs: Any,
- ) -> LineDetect:
- # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
- # weights_backbone = ResNet50_Weights.verify(weights_backbone)
- if num_classes is None:
- num_classes = 5
- if num_points is None:
- num_points = 3
- size=224*2
- maxvitfpn =maxvit_with_fpn(size=size)
- # print(maxvit.named_children())
- # for i,layer in enumerate(maxvit.named_children()):
- # print(f'layer:{i}:{layer}')
- in_channels_list = [64,64, 64, 128, 256, 512]
- featmap_names = ['0', '1', '2', '3', '4', '5','pool']
- roi_pooler = MultiScaleRoIAlign(
- featmap_names=featmap_names,
- output_size=7,
- sampling_ratio=2
- )
- test_input = torch.randn(1, 3,size,size)
- model = LineDetect(
- backbone=maxvitfpn,
- num_classes=num_classes,
- min_size=size,
- max_size=size,
- rpn_anchor_generator=get_anchor_generator(maxvitfpn, test_input=test_input),
- box_roi_pool=roi_pooler
- )
- return model
- def linedetect_swin_transformer_fpn(
- *,
- num_classes: Optional[int] = None,
- num_points:Optional[int] = None,
- type='t',
- **kwargs: Any,
- ) -> LineDetect:
- # weights = LineNet_ResNet50_FPN_Weights.verify(weights)
- # weights_backbone = ResNet50_Weights.verify(weights_backbone)
- if num_classes is None:
- num_classes = 3
- if num_points is None:
- num_points = 3
- size=512
- backbone_with_fpn, roi_pooler, anchor_generator=get_swin_transformer_fpn(type=type)
- # test_input = torch.randn(1, 3,size,size)
- model = LineDetect(
- backbone=backbone_with_fpn,
- min_size=size,
- max_size=size,
- num_classes=3, # COCO æ°æ®éæ 91 ç±»
- rpn_anchor_generator=anchor_generator,
- box_roi_pool=roi_pooler,
- detect_line=False,
- detect_point=False,
- )
- return model
- def linedetect_resnet18_fpn(
- *,
- num_classes: Optional[int] = None,
- num_points: Optional[int] = None,
- **kwargs: Any,
- ) -> LineDetect:
- if num_classes is None:
- num_classes = 4
- if num_points is None:
- num_points = 3
- size=1024
- backbone = resnet_fpn_backbone(backbone_name='resnet18',weights=None)
- model = LineDetect(backbone,min_size=size,max_size=size , num_classes=num_classes, num_points=num_points, **kwargs)
- return model
- def linedetect_resnet50_fpn(
- *,
- num_classes: Optional[int] = None,
- num_points: Optional[int] = None,
- **kwargs: Any,
- ) -> LineDetect:
- if num_classes is None:
- num_classes = 3
- if num_points is None:
- num_points = 3
- backbone = resnet_fpn_backbone(backbone_name='resnet18', weights=None)
- model = LineDetect(backbone, num_classes, num_points=num_points, **kwargs)
- return model
|