from typing import Dict, List, Optional, Tuple import matplotlib.pyplot as plt import torch import torch.nn.functional as F import torchvision # from scipy.optimize import linear_sum_assignment from torch import nn, Tensor from libs.vision_libs.ops import boxes as box_ops, roi_align import libs.vision_libs.models.detection._utils as det_utils from collections import OrderedDict def fastrcnn_loss(class_logits, box_regression, labels, regression_targets): # type: (Tensor, Tensor, List[Tensor], List[Tensor]) -> Tuple[Tensor, Tensor] """ Computes the loss for Faster R-CNN. Args: class_logits (Tensor) box_regression (Tensor) labels (list[BoxList]) regression_targets (Tensor) Returns: classification_loss (Tensor) box_loss (Tensor) """ # print(f'compute fastrcnn_loss:{labels}') labels = torch.cat(labels, dim=0) regression_targets = torch.cat(regression_targets, dim=0) classification_loss = F.cross_entropy(class_logits, labels) # get indices that correspond to the regression targets for # the corresponding ground truth labels, to be used with # advanced indexing sampled_pos_inds_subset = torch.where(labels > 0)[0] labels_pos = labels[sampled_pos_inds_subset] N, num_classes = class_logits.shape box_regression = box_regression.reshape(N, box_regression.size(-1) // 4, 4) box_loss = F.smooth_l1_loss( box_regression[sampled_pos_inds_subset, labels_pos], regression_targets[sampled_pos_inds_subset], beta=1 / 9, reduction="sum", ) box_loss = box_loss / labels.numel() return classification_loss, box_loss def maskrcnn_inference(x, labels): # type: (Tensor, List[Tensor]) -> List[Tensor] """ From the results of the CNN, post process the masks by taking the mask corresponding to the class with max probability (which are of fixed size and directly output by the CNN) and return the masks in the mask field of the BoxList. Args: x (Tensor): the mask logits labels (list[BoxList]): bounding boxes that are used as reference, one for ech image Returns: results (list[BoxList]): one BoxList for each image, containing the extra field mask """ mask_prob = x.sigmoid() # select masks corresponding to the predicted classes num_masks = x.shape[0] boxes_per_image = [label.shape[0] for label in labels] labels = torch.cat(labels) index = torch.arange(num_masks, device=labels.device) mask_prob = mask_prob[index, labels][:, None] mask_prob = mask_prob.split(boxes_per_image, dim=0) return mask_prob def project_masks_on_boxes(gt_masks, boxes, matched_idxs, M): # type: (Tensor, Tensor, Tensor, int) -> Tensor """ Given segmentation masks and the bounding boxes corresponding to the location of the masks in the image, this function crops and resizes the masks in the position defined by the boxes. This prepares the masks for them to be fed to the loss computation as the targets. """ matched_idxs = matched_idxs.to(boxes) rois = torch.cat([matched_idxs[:, None], boxes], dim=1) gt_masks = gt_masks[:, None].to(rois) return roi_align(gt_masks, rois, (M, M), 1.0)[:, 0] def maskrcnn_loss(mask_logits, proposals, gt_masks, gt_labels, mask_matched_idxs): # type: (Tensor, List[Tensor], List[Tensor], List[Tensor], List[Tensor]) -> Tensor """ Args: proposals (list[BoxList]) mask_logits (Tensor) targets (list[BoxList]) Return: mask_loss (Tensor): scalar tensor containing the loss """ discretization_size = mask_logits.shape[-1] labels = [gt_label[idxs] for gt_label, idxs in zip(gt_labels, mask_matched_idxs)] mask_targets = [ project_masks_on_boxes(m, p, i, discretization_size) for m, p, i in zip(gt_masks, proposals, mask_matched_idxs) ] labels = torch.cat(labels, dim=0) mask_targets = torch.cat(mask_targets, dim=0) # torch.mean (in binary_cross_entropy_with_logits) doesn't # accept empty tensors, so handle it separately if mask_targets.numel() == 0: return mask_logits.sum() * 0 mask_loss = F.binary_cross_entropy_with_logits( mask_logits[torch.arange(labels.shape[0], device=labels.device), labels], mask_targets ) return mask_loss def normalize_tensor(t): return (t - t.min()) / (t.max() - t.min() + 1e-6) def line_length(lines): """ 计算每条线段的长度 lines: [N, 2, 2] 表示 N 条线段,每条线段由两个点组成 返回: [N] """ return torch.norm(lines[:, 1] - lines[:, 0], dim=-1) def line_direction(lines): """ 计算每条线段的单位方向向量 lines: [N, 2, 2] 返回: [N, 2] 单位方向向量 """ vec = lines[:, 1] - lines[:, 0] return F.normalize(vec, dim=-1) def angle_loss_cosine(pred_dir, gt_dir): """ 使用 cosine similarity 计算方向差异 pred_dir: [N, 2] gt_dir: [N, 2] 返回: [N] """ cos_sim = torch.sum(pred_dir * gt_dir, dim=-1).clamp(-1.0, 1.0) return 1.0 - cos_sim # 或者 torch.acos(cos_sim) / pi 也可 def line_length(lines): """ 计算每条线段的长度 lines: [N, 2, 2] 表示 N 条线段,每条线段由两个点组成 返回: [N] """ return torch.norm(lines[:, 1] - lines[:, 0], dim=-1) def line_direction(lines): """ 计算每条线段的单位方向向量 lines: [N, 2, 2] 返回: [N, 2] 单位方向向量 """ vec = lines[:, 1] - lines[:, 0] return F.normalize(vec, dim=-1) def angle_loss_cosine(pred_dir, gt_dir): """ 使用 cosine similarity 计算方向差异 pred_dir: [N, 2] gt_dir: [N, 2] 返回: [N] """ cos_sim = torch.sum(pred_dir * gt_dir, dim=-1).clamp(-1.0, 1.0) return 1.0 - cos_sim # 或者 torch.acos(cos_sim) / pi 也可 def single_point_to_heatmap(keypoints, rois, heatmap_size): # type: (Tensor, Tensor, int) -> Tensor print(f'rois:{rois.shape}') print(f'heatmap_size:{heatmap_size}') print(f'keypoints.shape:{keypoints.shape}') # batch_size, num_keypoints, _ = keypoints.shape x = keypoints[..., 0].unsqueeze(1) y = keypoints[..., 1].unsqueeze(1) gs = generate_gaussian_heatmaps(x, y,num_points=1, heatmap_size=heatmap_size, sigma=2.0) # show_heatmap(gs[0],'target') all_roi_heatmap = [] for roi, heatmap in zip(rois, gs): # show_heatmap(heatmap, 'target') # print(f'heatmap:{heatmap.shape}') heatmap = heatmap.unsqueeze(0) x1, y1, x2, y2 = map(int, roi) roi_heatmap = torch.zeros_like(heatmap) roi_heatmap[..., y1:y2 + 1, x1:x2 + 1] = heatmap[..., y1:y2 + 1, x1:x2 + 1] # show_heatmap(roi_heatmap[0],'roi_heatmap') all_roi_heatmap.append(roi_heatmap) all_roi_heatmap = torch.cat(all_roi_heatmap) print(f'all_roi_heatmap:{all_roi_heatmap.shape}') return all_roi_heatmap def line_points_to_heatmap(keypoints, rois, heatmap_size): # type: (Tensor, Tensor, int) -> Tensor print(f'rois:{rois.shape}') print(f'heatmap_size:{heatmap_size}') print(f'keypoints.shape:{keypoints.shape}') # batch_size, num_keypoints, _ = keypoints.shape x = keypoints[..., 0] y = keypoints[..., 1] gs = generate_gaussian_heatmaps(x, y, heatmap_size, 1.0) # show_heatmap(gs[0],'target') all_roi_heatmap = [] for roi, heatmap in zip(rois, gs): # print(f'heatmap:{heatmap.shape}') heatmap = heatmap.unsqueeze(0) x1, y1, x2, y2 = map(int, roi) roi_heatmap = torch.zeros_like(heatmap) roi_heatmap[..., y1:y2 + 1, x1:x2 + 1] = heatmap[..., y1:y2 + 1, x1:x2 + 1] # show_heatmap(roi_heatmap,'roi_heatmap') all_roi_heatmap.append(roi_heatmap) all_roi_heatmap = torch.cat(all_roi_heatmap) print(f'all_roi_heatmap:{all_roi_heatmap.shape}') return all_roi_heatmap """ 修改适配的原结构的点 转热图,适用于带roi_pool版本的 """ def line_points_to_heatmap_(keypoints, rois, heatmap_size): # type: (Tensor, Tensor, int) -> Tuple[Tensor, Tensor] print(f'rois:{rois.shape}') print(f'heatmap_size:{heatmap_size}') offset_x = rois[:, 0] offset_y = rois[:, 1] scale_x = heatmap_size / (rois[:, 2] - rois[:, 0]) scale_y = heatmap_size / (rois[:, 3] - rois[:, 1]) offset_x = offset_x[:, None] offset_y = offset_y[:, None] scale_x = scale_x[:, None] scale_y = scale_y[:, None] print(f'keypoints.shape:{keypoints.shape}') # batch_size, num_keypoints, _ = keypoints.shape x = keypoints[..., 0] y = keypoints[..., 1] # gs=generate_gaussian_heatmaps(x,y,512,1.0) # print(f'gs_heatmap shape:{gs.shape}') # # show_heatmap(gs[0],'target') x_boundary_inds = x == rois[:, 2][:, None] y_boundary_inds = y == rois[:, 3][:, None] x = (x - offset_x) * scale_x x = x.floor().long() y = (y - offset_y) * scale_y y = y.floor().long() x[x_boundary_inds] = heatmap_size - 1 y[y_boundary_inds] = heatmap_size - 1 # print(f'heatmaps x:{x}') # print(f'heatmaps y:{y}') valid_loc = (x >= 0) & (y >= 0) & (x < heatmap_size) & (y < heatmap_size) vis = keypoints[..., 2] > 0 valid = (valid_loc & vis).long() gs_heatmap = generate_gaussian_heatmaps(x, y, heatmap_size, 1.0) show_heatmap(gs_heatmap[0], 'feature') # print(f'gs_heatmap:{gs_heatmap.shape}') # # lin_ind = y * heatmap_size + x # print(f'lin_ind:{lin_ind.shape}') # heatmaps = lin_ind * valid return gs_heatmap def generate_gaussian_heatmaps(xs, ys, heatmap_size,num_points=2, sigma=2.0, device='cuda'): """ 为一组点生成并合并高斯热图。 Args: xs (Tensor): 形状为 (N, 2) 的所有点的 x 坐标 ys (Tensor): 形状为 (N, 2) 的所有点的 y 坐标 heatmap_size (int): 热图大小 H=W sigma (float): 高斯核标准差 device (str): 设备类型 ('cpu' or 'cuda') Returns: Tensor: 形状为 (H, W) 的合并后的热图 """ assert xs.shape == ys.shape, "x and y must have the same shape" print(f'xs:{xs.shape}') N = xs.shape[0] print(f'N:{N},num_points:{num_points}') # 创建网格 grid_y, grid_x = torch.meshgrid( torch.arange(heatmap_size, device=device), torch.arange(heatmap_size, device=device), indexing='ij' ) # print(f'heatmap_size:{heatmap_size}') # 初始化输出热图 combined_heatmap = torch.zeros((N, heatmap_size, heatmap_size), device=device) for i in range(N): heatmap= torch.zeros((heatmap_size, heatmap_size), device=device) for j in range(num_points): mu_x1 = xs[i, j].clamp(0, heatmap_size - 1).item() mu_y1 = ys[i, j].clamp(0, heatmap_size - 1).item() # print(f'mu_x1,mu_y1:{mu_x1},{mu_y1}') # 计算距离平方 dist1 = (grid_x - mu_x1) ** 2 + (grid_y - mu_y1) ** 2 # 计算高斯分布 heatmap1 = torch.exp(-dist1 / (2 * sigma ** 2)) heatmap+=heatmap1 # mu_x2 = xs[i, 1].clamp(0, heatmap_size - 1).item() # mu_y2 = ys[i, 1].clamp(0, heatmap_size - 1).item() # # # 计算距离平方 # dist2 = (grid_x - mu_x2) ** 2 + (grid_y - mu_y2) ** 2 # # # 计算高斯分布 # heatmap2 = torch.exp(-dist2 / (2 * sigma ** 2)) # # heatmap = heatmap1 + heatmap2 # 将当前热图累加到结果中 combined_heatmap[i] = heatmap return combined_heatmap # 显示热图的函数 def show_heatmap(heatmap, title="Heatmap"): """ 使用 matplotlib 显示热图。 Args: heatmap (Tensor): 要显示的热图张量 title (str): 图表标题 """ # 如果在 GPU 上,首先将其移动到 CPU 并转换为 numpy 数组 if heatmap.is_cuda: heatmap = heatmap.cpu().numpy() else: heatmap = heatmap.numpy() plt.imshow(heatmap, cmap='hot', interpolation='nearest') plt.colorbar() plt.title(title) plt.show() def keypoints_to_heatmap(keypoints, rois, heatmap_size): # type: (Tensor, Tensor, int) -> Tuple[Tensor, Tensor] offset_x = rois[:, 0] offset_y = rois[:, 1] scale_x = heatmap_size / (rois[:, 2] - rois[:, 0]) scale_y = heatmap_size / (rois[:, 3] - rois[:, 1]) offset_x = offset_x[:, None] offset_y = offset_y[:, None] scale_x = scale_x[:, None] scale_y = scale_y[:, None] x = keypoints[..., 0] y = keypoints[..., 1] x_boundary_inds = x == rois[:, 2][:, None] y_boundary_inds = y == rois[:, 3][:, None] x = (x - offset_x) * scale_x x = x.floor().long() y = (y - offset_y) * scale_y y = y.floor().long() x[x_boundary_inds] = heatmap_size - 1 y[y_boundary_inds] = heatmap_size - 1 valid_loc = (x >= 0) & (y >= 0) & (x < heatmap_size) & (y < heatmap_size) vis = keypoints[..., 2] > 0 valid = (valid_loc & vis).long() lin_ind = y * heatmap_size + x heatmaps = lin_ind * valid return heatmaps, valid def _onnx_heatmaps_to_keypoints( maps, maps_i, roi_map_width, roi_map_height, widths_i, heights_i, offset_x_i, offset_y_i ): num_keypoints = torch.scalar_tensor(maps.size(1), dtype=torch.int64) width_correction = widths_i / roi_map_width height_correction = heights_i / roi_map_height roi_map = F.interpolate( maps_i[:, None], size=(int(roi_map_height), int(roi_map_width)), mode="bicubic", align_corners=False )[:, 0] w = torch.scalar_tensor(roi_map.size(2), dtype=torch.int64) pos = roi_map.reshape(num_keypoints, -1).argmax(dim=1) x_int = pos % w y_int = (pos - x_int) // w x = (torch.tensor(0.5, dtype=torch.float32) + x_int.to(dtype=torch.float32)) * width_correction.to( dtype=torch.float32 ) y = (torch.tensor(0.5, dtype=torch.float32) + y_int.to(dtype=torch.float32)) * height_correction.to( dtype=torch.float32 ) xy_preds_i_0 = x + offset_x_i.to(dtype=torch.float32) xy_preds_i_1 = y + offset_y_i.to(dtype=torch.float32) xy_preds_i_2 = torch.ones(xy_preds_i_1.shape, dtype=torch.float32) xy_preds_i = torch.stack( [ xy_preds_i_0.to(dtype=torch.float32), xy_preds_i_1.to(dtype=torch.float32), xy_preds_i_2.to(dtype=torch.float32), ], 0, ) # TODO: simplify when indexing without rank will be supported by ONNX base = num_keypoints * num_keypoints + num_keypoints + 1 ind = torch.arange(num_keypoints) ind = ind.to(dtype=torch.int64) * base end_scores_i = ( roi_map.index_select(1, y_int.to(dtype=torch.int64)) .index_select(2, x_int.to(dtype=torch.int64)) .view(-1) .index_select(0, ind.to(dtype=torch.int64)) ) return xy_preds_i, end_scores_i @torch.jit._script_if_tracing def _onnx_heatmaps_to_keypoints_loop( maps, rois, widths_ceil, heights_ceil, widths, heights, offset_x, offset_y, num_keypoints ): xy_preds = torch.zeros((0, 3, int(num_keypoints)), dtype=torch.float32, device=maps.device) end_scores = torch.zeros((0, int(num_keypoints)), dtype=torch.float32, device=maps.device) for i in range(int(rois.size(0))): xy_preds_i, end_scores_i = _onnx_heatmaps_to_keypoints( maps, maps[i], widths_ceil[i], heights_ceil[i], widths[i], heights[i], offset_x[i], offset_y[i] ) xy_preds = torch.cat((xy_preds.to(dtype=torch.float32), xy_preds_i.unsqueeze(0).to(dtype=torch.float32)), 0) end_scores = torch.cat( (end_scores.to(dtype=torch.float32), end_scores_i.to(dtype=torch.float32).unsqueeze(0)), 0 ) return xy_preds, end_scores def heatmaps_to_keypoints(maps, rois): """Extract predicted keypoint locations from heatmaps. Output has shape (#rois, 4, #keypoints) with the 4 rows corresponding to (x, y, logit, prob) for each keypoint. """ # This function converts a discrete image coordinate in a HEATMAP_SIZE x # HEATMAP_SIZE image to a continuous keypoint coordinate. We maintain # consistency with keypoints_to_heatmap_labels by using the conversion from # Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a # continuous coordinate. offset_x = rois[:, 0] offset_y = rois[:, 1] widths = rois[:, 2] - rois[:, 0] heights = rois[:, 3] - rois[:, 1] widths = widths.clamp(min=1) heights = heights.clamp(min=1) widths_ceil = widths.ceil() heights_ceil = heights.ceil() num_keypoints = maps.shape[1] if torchvision._is_tracing(): xy_preds, end_scores = _onnx_heatmaps_to_keypoints_loop( maps, rois, widths_ceil, heights_ceil, widths, heights, offset_x, offset_y, torch.scalar_tensor(num_keypoints, dtype=torch.int64), ) return xy_preds.permute(0, 2, 1), end_scores xy_preds = torch.zeros((len(rois), 3, num_keypoints), dtype=torch.float32, device=maps.device) end_scores = torch.zeros((len(rois), num_keypoints), dtype=torch.float32, device=maps.device) for i in range(len(rois)): roi_map_width = int(widths_ceil[i].item()) roi_map_height = int(heights_ceil[i].item()) width_correction = widths[i] / roi_map_width height_correction = heights[i] / roi_map_height roi_map = F.interpolate( maps[i][:, None], size=(roi_map_height, roi_map_width), mode="bicubic", align_corners=False )[:, 0] # roi_map_probs = scores_to_probs(roi_map.copy()) w = roi_map.shape[2] pos = roi_map.reshape(num_keypoints, -1).argmax(dim=1) x_int = pos % w y_int = torch.div(pos - x_int, w, rounding_mode="floor") # assert (roi_map_probs[k, y_int, x_int] == # roi_map_probs[k, :, :].max()) x = (x_int.float() + 0.5) * width_correction y = (y_int.float() + 0.5) * height_correction xy_preds[i, 0, :] = x + offset_x[i] xy_preds[i, 1, :] = y + offset_y[i] xy_preds[i, 2, :] = 1 end_scores[i, :] = roi_map[torch.arange(num_keypoints, device=roi_map.device), y_int, x_int] return xy_preds.permute(0, 2, 1), end_scores def non_maximum_suppression(a): ap = F.max_pool2d(a, 3, stride=1, padding=1) mask = (a == ap).float().clamp(min=0.0) return a * mask def heatmaps_to_lines(maps, rois): """Extract predicted keypoint locations from heatmaps. Output has shape (#rois, 4, #keypoints) with the 4 rows corresponding to (x, y, logit, prob) for each keypoint. """ # This function converts a discrete image coordinate in a HEATMAP_SIZE x # HEATMAP_SIZE image to a continuous keypoint coordinate. We maintain # consistency with keypoints_to_heatmap_labels by using the conversion from # Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a # continuous coordinate. xy_preds = torch.zeros((len(rois), 3, 2), dtype=torch.float32, device=maps.device) end_scores = torch.zeros((len(rois), 2), dtype=torch.float32, device=maps.device) for i in range(len(rois)): roi_map = maps[i] print(f'roi_map:{roi_map.shape}') # roi_map_probs = scores_to_probs(roi_map.copy()) w = roi_map.shape[2] flatten_map = non_maximum_suppression(roi_map).reshape(1, -1) score, index = torch.topk(flatten_map, k=2) print(f'index:{index}') # pos = roi_map.reshape(num_keypoints, -1).argmax(dim=1) pos = index # x_int = pos % w # # y_int = torch.div(pos - x_int, w, rounding_mode="floor") x = pos % w y = torch.div(pos - x, w, rounding_mode="floor") xy_preds[i, 0, :] = x xy_preds[i, 1, :] = y xy_preds[i, 2, :] = 1 end_scores[i, :] = roi_map[torch.arange(1, device=roi_map.device), y, x] return xy_preds.permute(0, 2, 1), end_scores def lines_features_align(features, proposals, img_size): print(f'lines_features_align features:{features.shape},proposals:{len(proposals)}') align_feat_list = [] for feat, proposals_per_img in zip(features, proposals): print(f'lines_features_align feat:{feat.shape}, proposals_per_img:{proposals_per_img.shape}') if proposals_per_img.shape[0]>0: feat = feat.unsqueeze(0) for proposal in proposals_per_img: align_feat = torch.zeros_like(feat) # print(f'align_feat:{align_feat.shape}') x1, y1, x2, y2 = map(lambda v: int(v.item()), proposal) # 将每个proposal框内的部分赋值到align_feats对应位置 align_feat[:, :, y1:y2 + 1, x1:x2 + 1] = feat[:, :, y1:y2 + 1, x1:x2 + 1] align_feat_list.append(align_feat) print(f'align_feat_list:{align_feat_list}') feats_tensor = torch.cat(align_feat_list) print(f'align features :{feats_tensor.shape}') return feats_tensor def lines_point_pair_loss(line_logits, proposals, gt_lines, line_matched_idxs): # type: (Tensor, List[Tensor], List[Tensor], List[Tensor]) -> Tensor N, K, H, W = line_logits.shape len_proposals = len(proposals) print(f'lines_point_pair_loss line_logits.shape:{line_logits.shape},len_proposals:{len_proposals}') if H != W: raise ValueError( f"line_logits height and width (last two elements of shape) should be equal. Instead got H = {H} and W = {W}" ) discretization_size = H heatmaps = [] gs_heatmaps = [] valid = [] for proposals_per_image, gt_kp_in_image, midx in zip(proposals, gt_lines, line_matched_idxs): print(f'line_proposals_per_image:{proposals_per_image.shape}') print(f'gt_lines:{gt_lines}') kp = gt_kp_in_image[midx] gs_heatmaps_per_img = line_points_to_heatmap(kp, proposals_per_image, discretization_size) gs_heatmaps.append(gs_heatmaps_per_img) # print(f'heatmaps_per_image:{heatmaps_per_image.shape}') # heatmaps.append(heatmaps_per_image.view(-1)) # valid.append(valid_per_image.view(-1)) # line_targets = torch.cat(heatmaps, dim=0) gs_heatmaps = torch.cat(gs_heatmaps, dim=0) print(f'gs_heatmaps:{gs_heatmaps.shape}, line_logits.shape:{line_logits.squeeze(1).shape}') # print(f'line_targets:{line_targets.shape},{line_targets}') # valid = torch.cat(valid, dim=0).to(dtype=torch.uint8) # valid = torch.where(valid)[0] # print(f' line_targets[valid]:{line_targets[valid]}') # torch.mean (in binary_cross_entropy_with_logits) doesn't # accept empty tensors, so handle it sepaartely # if line_targets.numel() == 0 or len(valid) == 0: # return line_logits.sum() * 0 # line_logits = line_logits.view(N * K, H * W) # print(f'line_logits[valid]:{line_logits[valid].shape}') line_logits = line_logits.squeeze(1) # line_loss = F.cross_entropy(line_logits[valid], line_targets[valid]) line_loss = F.cross_entropy(line_logits, gs_heatmaps) return line_loss def compute_point_loss(line_logits, proposals, gt_points, point_matched_idxs): # type: (Tensor, List[Tensor], List[Tensor], List[Tensor]) -> Tensor N, K, H, W = line_logits.shape len_proposals = len(proposals) print(f'starte to compute_point_loss') print(f'compute_point_loss line_logits.shape:{line_logits.shape},len_proposals:{len_proposals}') if H != W: raise ValueError( f"line_logits height and width (last two elements of shape) should be equal. Instead got H = {H} and W = {W}" ) discretization_size = H gs_heatmaps = [] print(f'point_matched_idxs:{point_matched_idxs}') for proposals_per_image, gt_kp_in_image, midx in zip(proposals, gt_points, point_matched_idxs): print(f'proposals_per_image:{proposals_per_image.shape}') kp = gt_kp_in_image[midx] # print(f'gt_kp_in_image:{gt_kp_in_image}') gs_heatmaps_per_img = single_point_to_heatmap(kp, proposals_per_image, discretization_size) gs_heatmaps.append(gs_heatmaps_per_img) gs_heatmaps = torch.cat(gs_heatmaps, dim=0) print(f'gs_heatmaps:{gs_heatmaps.shape}, line_logits.shape:{line_logits.squeeze(1).shape}') line_logits = line_logits[:,0] print(f'single_point_logits:{line_logits.shape}') line_loss = F.cross_entropy(line_logits, gs_heatmaps) return line_loss def lines_to_boxes(lines, img_size=511): """ 输入: lines: Tensor of shape (N, 2, 2),表示 N 条线段,每个线段有两个端点 (x, y) img_size: int,图像尺寸,用于 clamp 边界 输出: boxes: Tensor of shape (N, 4),表示 N 个包围盒 [x_min, y_min, x_max, y_max] """ # 提取所有线段的两个端点 p1 = lines[:, 0] # (N, 2) p2 = lines[:, 1] # (N, 2) # 每条线段的 x 和 y 坐标 x_coords = torch.stack([p1[:, 0], p2[:, 0]], dim=1) # (N, 2) y_coords = torch.stack([p1[:, 1], p2[:, 1]], dim=1) # (N, 2) # 计算包围盒边界 x_min = x_coords.min(dim=1).values y_min = y_coords.min(dim=1).values x_max = x_coords.max(dim=1).values y_max = y_coords.max(dim=1).values # 扩展边界并限制在图像范围内 x_min = (x_min - 1).clamp(min=0, max=img_size) y_min = (y_min - 1).clamp(min=0, max=img_size) x_max = (x_max + 1).clamp(min=0, max=img_size) y_max = (y_max + 1).clamp(min=0, max=img_size) # 合成包围盒 boxes = torch.stack([x_min, y_min, x_max, y_max], dim=1) # (N, 4) return boxes def box_iou_pairwise(box1, box2): """ 输入: box1: shape (N, 4) box2: shape (M, 4) 输出: ious: shape (min(N, M), ), 只计算 i = j 的配对 """ N = min(len(box1), len(box2)) lt = torch.max(box1[:N, :2], box2[:N, :2]) # 左上角 rb = torch.min(box1[:N, 2:], box2[:N, 2:]) # 右下角 wh = (rb - lt).clamp(min=0) # 宽高 inter_area = wh[:, 0] * wh[:, 1] # 交集面积 area1 = (box1[:N, 2] - box1[:N, 0]) * (box1[:N, 3] - box1[:N, 1]) area2 = (box2[:N, 2] - box2[:N, 0]) * (box2[:N, 3] - box2[:N, 1]) union_area = area1 + area2 - inter_area ious = inter_area / (union_area + 1e-6) return ious def line_iou_loss(x, boxes, gt_lines, matched_idx, img_size=511, alpha=1.0, beta=1.0, gamma=1.0): """ Args: x: [N,1,H,W] 热力图 boxes: [N,4] 框坐标 gt_lines: [N,2,3] GT线段(含可见性) matched_idx: 匹配 index img_size: 图像尺寸 alpha: IoU 损失权重 beta: 长度损失权重 gamma: 方向角度损失权重 """ losses = [] boxes_per_image = [box.size(0) for box in boxes] x2 = x.split(boxes_per_image, dim=0) for xx, bb, gt_line, mid in zip(x2, boxes, gt_lines, matched_idx): p_prob, _ = heatmaps_to_lines(xx, bb) pred_lines = p_prob gt_line_points = gt_line[mid] if len(pred_lines) == 0 or len(gt_line_points) == 0: continue # IoU 损失 pred_boxes = lines_to_boxes(pred_lines, img_size) gt_boxes = lines_to_boxes(gt_line_points, img_size) ious = box_iou_pairwise(pred_boxes, gt_boxes) iou_loss = 1.0 - ious # [N] # 长度损失 pred_len = line_length(pred_lines) gt_len = line_length(gt_line_points) length_diff = F.l1_loss(pred_len, gt_len, reduction='none') # [N] # 方向角度损失 pred_dir = line_direction(pred_lines) gt_dir = line_direction(gt_line_points) ang_loss = angle_loss_cosine(pred_dir, gt_dir) # [N] # 归一化每一项损失 norm_iou = normalize_tensor(iou_loss) norm_len = normalize_tensor(length_diff) norm_ang = normalize_tensor(ang_loss) total = alpha * norm_iou + beta * norm_len + gamma * norm_ang losses.append(total) if not losses: return None return torch.mean(torch.cat(losses)) def line_inference(x, boxes): # type: (Tensor, List[Tensor]) -> Tuple[List[Tensor], List[Tensor]] points_probs = [] points_scores = [] boxes_per_image = [box.size(0) for box in boxes] x2 = x.split(boxes_per_image, dim=0) for xx, bb in zip(x2, boxes): p_prob, scores = heatmaps_to_lines(xx, bb) points_probs.append(p_prob) points_scores.append(scores) return points_probs, points_scores def keypointrcnn_loss(keypoint_logits, proposals, gt_keypoints, keypoint_matched_idxs): # type: (Tensor, List[Tensor], List[Tensor], List[Tensor]) -> Tensor N, K, H, W = keypoint_logits.shape if H != W: raise ValueError( f"keypoint_logits height and width (last two elements of shape) should be equal. Instead got H = {H} and W = {W}" ) discretization_size = H heatmaps = [] valid = [] for proposals_per_image, gt_kp_in_image, midx in zip(proposals, gt_keypoints, keypoint_matched_idxs): kp = gt_kp_in_image[midx] heatmaps_per_image, valid_per_image = keypoints_to_heatmap(kp, proposals_per_image, discretization_size) heatmaps.append(heatmaps_per_image.view(-1)) valid.append(valid_per_image.view(-1)) keypoint_targets = torch.cat(heatmaps, dim=0) valid = torch.cat(valid, dim=0).to(dtype=torch.uint8) valid = torch.where(valid)[0] # torch.mean (in binary_cross_entropy_with_logits) doesn't # accept empty tensors, so handle it sepaartely if keypoint_targets.numel() == 0 or len(valid) == 0: return keypoint_logits.sum() * 0 keypoint_logits = keypoint_logits.view(N * K, H * W) keypoint_loss = F.cross_entropy(keypoint_logits[valid], keypoint_targets[valid]) return keypoint_loss def keypointrcnn_inference(x, boxes): # type: (Tensor, List[Tensor]) -> Tuple[List[Tensor], List[Tensor]] kp_probs = [] kp_scores = [] boxes_per_image = [box.size(0) for box in boxes] x2 = x.split(boxes_per_image, dim=0) for xx, bb in zip(x2, boxes): kp_prob, scores = heatmaps_to_keypoints(xx, bb) kp_probs.append(kp_prob) kp_scores.append(scores) return kp_probs, kp_scores def _onnx_expand_boxes(boxes, scale): # type: (Tensor, float) -> Tensor w_half = (boxes[:, 2] - boxes[:, 0]) * 0.5 h_half = (boxes[:, 3] - boxes[:, 1]) * 0.5 x_c = (boxes[:, 2] + boxes[:, 0]) * 0.5 y_c = (boxes[:, 3] + boxes[:, 1]) * 0.5 w_half = w_half.to(dtype=torch.float32) * scale h_half = h_half.to(dtype=torch.float32) * scale boxes_exp0 = x_c - w_half boxes_exp1 = y_c - h_half boxes_exp2 = x_c + w_half boxes_exp3 = y_c + h_half boxes_exp = torch.stack((boxes_exp0, boxes_exp1, boxes_exp2, boxes_exp3), 1) return boxes_exp # the next two functions should be merged inside Masker # but are kept here for the moment while we need them # temporarily for paste_mask_in_image def expand_boxes(boxes, scale): # type: (Tensor, float) -> Tensor if torchvision._is_tracing(): return _onnx_expand_boxes(boxes, scale) w_half = (boxes[:, 2] - boxes[:, 0]) * 0.5 h_half = (boxes[:, 3] - boxes[:, 1]) * 0.5 x_c = (boxes[:, 2] + boxes[:, 0]) * 0.5 y_c = (boxes[:, 3] + boxes[:, 1]) * 0.5 w_half *= scale h_half *= scale boxes_exp = torch.zeros_like(boxes) boxes_exp[:, 0] = x_c - w_half boxes_exp[:, 2] = x_c + w_half boxes_exp[:, 1] = y_c - h_half boxes_exp[:, 3] = y_c + h_half return boxes_exp @torch.jit.unused def expand_masks_tracing_scale(M, padding): # type: (int, int) -> float return torch.tensor(M + 2 * padding).to(torch.float32) / torch.tensor(M).to(torch.float32) def expand_masks(mask, padding): # type: (Tensor, int) -> Tuple[Tensor, float] M = mask.shape[-1] if torch._C._get_tracing_state(): # could not import is_tracing(), not sure why scale = expand_masks_tracing_scale(M, padding) else: scale = float(M + 2 * padding) / M padded_mask = F.pad(mask, (padding,) * 4) return padded_mask, scale def paste_mask_in_image(mask, box, im_h, im_w): # type: (Tensor, Tensor, int, int) -> Tensor TO_REMOVE = 1 w = int(box[2] - box[0] + TO_REMOVE) h = int(box[3] - box[1] + TO_REMOVE) w = max(w, 1) h = max(h, 1) # Set shape to [batchxCxHxW] mask = mask.expand((1, 1, -1, -1)) # Resize mask mask = F.interpolate(mask, size=(h, w), mode="bilinear", align_corners=False) mask = mask[0][0] im_mask = torch.zeros((im_h, im_w), dtype=mask.dtype, device=mask.device) x_0 = max(box[0], 0) x_1 = min(box[2] + 1, im_w) y_0 = max(box[1], 0) y_1 = min(box[3] + 1, im_h) im_mask[y_0:y_1, x_0:x_1] = mask[(y_0 - box[1]): (y_1 - box[1]), (x_0 - box[0]): (x_1 - box[0])] return im_mask def _onnx_paste_mask_in_image(mask, box, im_h, im_w): one = torch.ones(1, dtype=torch.int64) zero = torch.zeros(1, dtype=torch.int64) w = box[2] - box[0] + one h = box[3] - box[1] + one w = torch.max(torch.cat((w, one))) h = torch.max(torch.cat((h, one))) # Set shape to [batchxCxHxW] mask = mask.expand((1, 1, mask.size(0), mask.size(1))) # Resize mask mask = F.interpolate(mask, size=(int(h), int(w)), mode="bilinear", align_corners=False) mask = mask[0][0] x_0 = torch.max(torch.cat((box[0].unsqueeze(0), zero))) x_1 = torch.min(torch.cat((box[2].unsqueeze(0) + one, im_w.unsqueeze(0)))) y_0 = torch.max(torch.cat((box[1].unsqueeze(0), zero))) y_1 = torch.min(torch.cat((box[3].unsqueeze(0) + one, im_h.unsqueeze(0)))) unpaded_im_mask = mask[(y_0 - box[1]): (y_1 - box[1]), (x_0 - box[0]): (x_1 - box[0])] # TODO : replace below with a dynamic padding when support is added in ONNX # pad y zeros_y0 = torch.zeros(y_0, unpaded_im_mask.size(1)) zeros_y1 = torch.zeros(im_h - y_1, unpaded_im_mask.size(1)) concat_0 = torch.cat((zeros_y0, unpaded_im_mask.to(dtype=torch.float32), zeros_y1), 0)[0:im_h, :] # pad x zeros_x0 = torch.zeros(concat_0.size(0), x_0) zeros_x1 = torch.zeros(concat_0.size(0), im_w - x_1) im_mask = torch.cat((zeros_x0, concat_0, zeros_x1), 1)[:, :im_w] return im_mask @torch.jit._script_if_tracing def _onnx_paste_masks_in_image_loop(masks, boxes, im_h, im_w): res_append = torch.zeros(0, im_h, im_w) for i in range(masks.size(0)): mask_res = _onnx_paste_mask_in_image(masks[i][0], boxes[i], im_h, im_w) mask_res = mask_res.unsqueeze(0) res_append = torch.cat((res_append, mask_res)) return res_append def paste_masks_in_image(masks, boxes, img_shape, padding=1): # type: (Tensor, Tensor, Tuple[int, int], int) -> Tensor masks, scale = expand_masks(masks, padding=padding) boxes = expand_boxes(boxes, scale).to(dtype=torch.int64) im_h, im_w = img_shape if torchvision._is_tracing(): return _onnx_paste_masks_in_image_loop( masks, boxes, torch.scalar_tensor(im_h, dtype=torch.int64), torch.scalar_tensor(im_w, dtype=torch.int64) )[:, None] res = [paste_mask_in_image(m[0], b, im_h, im_w) for m, b in zip(masks, boxes)] if len(res) > 0: ret = torch.stack(res, dim=0)[:, None] else: ret = masks.new_empty((0, 1, im_h, im_w)) return ret class RoIHeads(nn.Module): __annotations__ = { "box_coder": det_utils.BoxCoder, "proposal_matcher": det_utils.Matcher, "fg_bg_sampler": det_utils.BalancedPositiveNegativeSampler, } def __init__( self, box_roi_pool, box_head, box_predictor, # Faster R-CNN training fg_iou_thresh, bg_iou_thresh, batch_size_per_image, positive_fraction, bbox_reg_weights, # Faster R-CNN inference score_thresh, nms_thresh, detections_per_img, # Line line_roi_pool=None, line_head=None, line_predictor=None, # Mask mask_roi_pool=None, mask_head=None, mask_predictor=None, keypoint_roi_pool=None, keypoint_head=None, keypoint_predictor=None, ): super().__init__() self.box_similarity = box_ops.box_iou # assign ground-truth boxes for each proposal self.proposal_matcher = det_utils.Matcher(fg_iou_thresh, bg_iou_thresh, allow_low_quality_matches=False) self.fg_bg_sampler = det_utils.BalancedPositiveNegativeSampler(batch_size_per_image, positive_fraction) if bbox_reg_weights is None: bbox_reg_weights = (10.0, 10.0, 5.0, 5.0) self.box_coder = det_utils.BoxCoder(bbox_reg_weights) self.box_roi_pool = box_roi_pool self.box_head = box_head self.box_predictor = box_predictor self.score_thresh = score_thresh self.nms_thresh = nms_thresh self.detections_per_img = detections_per_img self.line_roi_pool = line_roi_pool self.line_head = line_head self.line_predictor = line_predictor self.mask_roi_pool = mask_roi_pool self.mask_head = mask_head self.mask_predictor = mask_predictor self.keypoint_roi_pool = keypoint_roi_pool self.keypoint_head = keypoint_head self.keypoint_predictor = keypoint_predictor self.channel_compress = nn.Sequential( nn.Conv2d(256, 8, kernel_size=1), nn.BatchNorm2d(8), nn.ReLU(inplace=True) ) def has_mask(self): if self.mask_roi_pool is None: return False if self.mask_head is None: return False if self.mask_predictor is None: return False return True def has_keypoint(self): if self.keypoint_roi_pool is None: return False if self.keypoint_head is None: return False if self.keypoint_predictor is None: return False return True def has_line(self): # if self.line_roi_pool is None: # return False if self.line_head is None: return False # if self.line_predictor is None: # return False return True def assign_targets_to_proposals(self, proposals, gt_boxes, gt_labels): # type: (List[Tensor], List[Tensor], List[Tensor]) -> Tuple[List[Tensor], List[Tensor]] matched_idxs = [] labels = [] for proposals_in_image, gt_boxes_in_image, gt_labels_in_image in zip(proposals, gt_boxes, gt_labels): if gt_boxes_in_image.numel() == 0: # Background image device = proposals_in_image.device clamped_matched_idxs_in_image = torch.zeros( (proposals_in_image.shape[0],), dtype=torch.int64, device=device ) labels_in_image = torch.zeros((proposals_in_image.shape[0],), dtype=torch.int64, device=device) else: # set to self.box_similarity when https://github.com/pytorch/pytorch/issues/27495 lands match_quality_matrix = box_ops.box_iou(gt_boxes_in_image, proposals_in_image) matched_idxs_in_image = self.proposal_matcher(match_quality_matrix) clamped_matched_idxs_in_image = matched_idxs_in_image.clamp(min=0) labels_in_image = gt_labels_in_image[clamped_matched_idxs_in_image] labels_in_image = labels_in_image.to(dtype=torch.int64) # Label background (below the low threshold) bg_inds = matched_idxs_in_image == self.proposal_matcher.BELOW_LOW_THRESHOLD labels_in_image[bg_inds] = 0 # Label ignore proposals (between low and high thresholds) ignore_inds = matched_idxs_in_image == self.proposal_matcher.BETWEEN_THRESHOLDS labels_in_image[ignore_inds] = -1 # -1 is ignored by sampler matched_idxs.append(clamped_matched_idxs_in_image) labels.append(labels_in_image) return matched_idxs, labels def subsample(self, labels): # type: (List[Tensor]) -> List[Tensor] sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels) sampled_inds = [] for img_idx, (pos_inds_img, neg_inds_img) in enumerate(zip(sampled_pos_inds, sampled_neg_inds)): img_sampled_inds = torch.where(pos_inds_img | neg_inds_img)[0] sampled_inds.append(img_sampled_inds) return sampled_inds def add_gt_proposals(self, proposals, gt_boxes): # type: (List[Tensor], List[Tensor]) -> List[Tensor] proposals = [torch.cat((proposal, gt_box)) for proposal, gt_box in zip(proposals, gt_boxes)] return proposals def check_targets(self, targets): # type: (Optional[List[Dict[str, Tensor]]]) -> None if targets is None: raise ValueError("targets should not be None") if not all(["boxes" in t for t in targets]): raise ValueError("Every element of targets should have a boxes key") if not all(["labels" in t for t in targets]): raise ValueError("Every element of targets should have a labels key") if self.has_mask(): if not all(["masks" in t for t in targets]): raise ValueError("Every element of targets should have a masks key") def select_training_samples( self, proposals, # type: List[Tensor] targets, # type: Optional[List[Dict[str, Tensor]]] ): # type: (...) -> Tuple[List[Tensor], List[Tensor], List[Tensor], List[Tensor]] self.check_targets(targets) if targets is None: raise ValueError("targets should not be None") dtype = proposals[0].dtype device = proposals[0].device gt_boxes = [t["boxes"].to(dtype) for t in targets] gt_labels = [t["labels"] for t in targets] # append ground-truth bboxes to propos proposals = self.add_gt_proposals(proposals, gt_boxes) # get matching gt indices for each proposal matched_idxs, labels = self.assign_targets_to_proposals(proposals, gt_boxes, gt_labels) # sample a fixed proportion of positive-negative proposals sampled_inds = self.subsample(labels) matched_gt_boxes = [] num_images = len(proposals) for img_id in range(num_images): img_sampled_inds = sampled_inds[img_id] proposals[img_id] = proposals[img_id][img_sampled_inds] labels[img_id] = labels[img_id][img_sampled_inds] matched_idxs[img_id] = matched_idxs[img_id][img_sampled_inds] gt_boxes_in_image = gt_boxes[img_id] if gt_boxes_in_image.numel() == 0: gt_boxes_in_image = torch.zeros((1, 4), dtype=dtype, device=device) matched_gt_boxes.append(gt_boxes_in_image[matched_idxs[img_id]]) regression_targets = self.box_coder.encode(matched_gt_boxes, proposals) return proposals, matched_idxs, labels, regression_targets def postprocess_detections( self, class_logits, # type: Tensor box_regression, # type: Tensor proposals, # type: List[Tensor] image_shapes, # type: List[Tuple[int, int]] ): # type: (...) -> Tuple[List[Tensor], List[Tensor], List[Tensor]] device = class_logits.device num_classes = class_logits.shape[-1] boxes_per_image = [boxes_in_image.shape[0] for boxes_in_image in proposals] pred_boxes = self.box_coder.decode(box_regression, proposals) pred_scores = F.softmax(class_logits, -1) pred_boxes_list = pred_boxes.split(boxes_per_image, 0) pred_scores_list = pred_scores.split(boxes_per_image, 0) all_boxes = [] all_scores = [] all_labels = [] for boxes, scores, image_shape in zip(pred_boxes_list, pred_scores_list, image_shapes): boxes = box_ops.clip_boxes_to_image(boxes, image_shape) # create labels for each prediction labels = torch.arange(num_classes, device=device) labels = labels.view(1, -1).expand_as(scores) # remove predictions with the background label boxes = boxes[:, 1:] scores = scores[:, 1:] labels = labels[:, 1:] # batch everything, by making every class prediction be a separate instance boxes = boxes.reshape(-1, 4) scores = scores.reshape(-1) labels = labels.reshape(-1) # remove low scoring boxes inds = torch.where(scores > self.score_thresh)[0] boxes, scores, labels = boxes[inds], scores[inds], labels[inds] # remove empty boxes keep = box_ops.remove_small_boxes(boxes, min_size=1e-2) boxes, scores, labels = boxes[keep], scores[keep], labels[keep] # non-maximum suppression, independently done per class keep = box_ops.batched_nms(boxes, scores, labels, self.nms_thresh) # keep only topk scoring predictions keep = keep[: self.detections_per_img] boxes, scores, labels = boxes[keep], scores[keep], labels[keep] all_boxes.append(boxes) all_scores.append(scores) all_labels.append(labels) return all_boxes, all_scores, all_labels def forward( self, features, # type: Dict[str, Tensor] proposals, # type: List[Tensor] image_shapes, # type: List[Tuple[int, int]] targets=None, # type: Optional[List[Dict[str, Tensor]]] ): # type: (...) -> Tuple[List[Dict[str, Tensor]], Dict[str, Tensor]] """ Args: features (List[Tensor]) proposals (List[Tensor[N, 4]]) image_shapes (List[Tuple[H, W]]) targets (List[Dict]) """ print(f'roihead forward!!!') if targets is not None: for t in targets: # TODO: https://github.com/pytorch/pytorch/issues/26731 floating_point_types = (torch.float, torch.double, torch.half) if not t["boxes"].dtype in floating_point_types: raise TypeError(f"target boxes must of float type, instead got {t['boxes'].dtype}") if not t["labels"].dtype == torch.int64: raise TypeError(f"target labels must of int64 type, instead got {t['labels'].dtype}") if self.has_keypoint(): if not t["keypoints"].dtype == torch.float32: raise TypeError(f"target keypoints must of float type, instead got {t['keypoints'].dtype}") if self.training: proposals, matched_idxs, labels, regression_targets = self.select_training_samples(proposals, targets) else: if targets is not None: proposals, matched_idxs, labels, regression_targets = self.select_training_samples(proposals, targets) else: labels = None regression_targets = None matched_idxs = None box_features = self.box_roi_pool(features, proposals, image_shapes) box_features = self.box_head(box_features) class_logits, box_regression = self.box_predictor(box_features) result: List[Dict[str, torch.Tensor]] = [] losses = {} # _, C, H, W = features['0'].shape # 忽略 batch_size,因为我们只关心 C, H, W if self.training: if labels is None: raise ValueError("labels cannot be None") if regression_targets is None: raise ValueError("regression_targets cannot be None") print(f'boxes compute losses') loss_classifier, loss_box_reg = fastrcnn_loss(class_logits, box_regression, labels, regression_targets) losses = {"loss_classifier": loss_classifier, "loss_box_reg": loss_box_reg} else: if targets is not None: loss_classifier, loss_box_reg = fastrcnn_loss(class_logits, box_regression, labels, regression_targets) losses = {"loss_classifier": loss_classifier, "loss_box_reg": loss_box_reg} boxes, scores, labels = self.postprocess_detections(class_logits, box_regression, proposals, image_shapes) num_images = len(boxes) for i in range(num_images): result.append( { "boxes": boxes[i], "labels": labels[i], "scores": scores[i], } ) if self.has_line(): print(f'roi_heads forward has_line()!!!!') print(f'labels:{labels}') line_proposals = [p["boxes"] for p in result] print(f'boxes_proposals:{len(line_proposals)}') # if line_proposals is None or len(line_proposals) == 0: # # 返回空特征或者跳过该部分计算 # return torch.empty(0, C, H, W).to(features['0'].device) if self.training: # during training, only focus on positive boxes num_images = len(proposals) print(f'num_images:{num_images}') line_proposals = [] point_proposals = [] arc_proposals = [] pos_matched_idxs = [] line_pos_matched_idxs = [] point_pos_matched_idxs = [] if matched_idxs is None: raise ValueError("if in trainning, matched_idxs should not be None") for img_id in range(num_images): pos = torch.where(labels[img_id] > 0)[0] line_pos=torch.where(labels[img_id] ==2)[0] point_pos=torch.where(labels[img_id] ==1)[0] line_proposals.append(proposals[img_id][line_pos]) point_proposals.append(proposals[img_id][point_pos]) line_pos_matched_idxs.append(matched_idxs[img_id][line_pos]) point_pos_matched_idxs.append(matched_idxs[img_id][point_pos]) # pos_matched_idxs.append(matched_idxs[img_id][pos]) else: if targets is not None: pos_matched_idxs = [] num_images = len(proposals) line_proposals = [] point_proposals=[] arc_proposals=[] line_pos_matched_idxs = [] point_pos_matched_idxs = [] print(f'val num_images:{num_images}') if matched_idxs is None: raise ValueError("if in trainning, matched_idxs should not be None") for img_id in range(num_images): pos = torch.where(labels[img_id] > 0)[0] # line_proposals.append(proposals[img_id][pos]) # pos_matched_idxs.append(matched_idxs[img_id][pos]) line_pos = torch.where(labels[img_id].item() == 2)[0] point_pos = torch.where(labels[img_id].item() == 1)[0] line_proposals.append(proposals[img_id][line_pos]) point_proposals.append(proposals[img_id][point_pos]) line_pos_matched_idxs.append(matched_idxs[img_id][line_pos]) point_pos_matched_idxs.append(matched_idxs[img_id][point_pos]) else: pos_matched_idxs = None print(f'line_proposals:{len(line_proposals)}') # line_features = self.line_roi_pool(features, line_proposals, image_shapes) # print(f'line_features from line_roi_pool:{line_features.shape}') #(b,256,512,512) line_features = self.channel_compress(features['0']) #(b.8,512,512) all_proposals=line_proposals+point_proposals # print(f'all_proposals:{all_proposals}') filtered_proposals = [proposal for proposal in all_proposals if proposal.shape[0] > 0] line_features = lines_features_align(line_features, filtered_proposals, image_shapes) print(f'line_features from features_align:{line_features.shape}') line_features = self.line_head(line_features) #(N,1,512,512) print(f'line_features from line_head:{line_features.shape}') # line_logits = self.line_predictor(line_features) line_logits = line_features print(f'line_logits:{line_logits.shape}') loss_line = {} loss_line_iou = {} model_loss_point = {} if self.training: if targets is None or pos_matched_idxs is None: raise ValueError("both targets and pos_matched_idxs should not be None when in training mode") gt_lines = [t["lines"] for t in targets] gt_points = [t["points"] for t in targets] print(f'gt_lines:{gt_lines[0].shape}') h, w = targets[0]["img_size"] img_size = h # rcnn_loss_line = lines_point_pair_loss( # line_logits, line_proposals, gt_lines, pos_matched_idxs # ) # iou_loss = line_iou_loss(line_logits, line_proposals, gt_lines, pos_matched_idxs, img_size) gt_lines_tensor=torch.cat(gt_lines) gt_points_tensor = torch.cat(gt_points) print(f'gt_lines_tensor:{gt_lines_tensor.shape}') print(f'gt_points_tensor:{gt_points_tensor.shape}') if gt_lines_tensor.shape[0]>0: loss_line = lines_point_pair_loss( line_logits, line_proposals, gt_lines, line_pos_matched_idxs ) loss_line_iou = line_iou_loss(line_logits, line_proposals, gt_lines, line_pos_matched_idxs, img_size) if gt_points_tensor.shape[0]>0: model_loss_point = compute_point_loss( line_logits, point_proposals, gt_points, point_pos_matched_idxs ) if not loss_line: loss_line = torch.tensor(0.0, device=line_features.device) if not loss_line_iou: loss_line_iou = torch.tensor(0.0, device=line_features.device) loss_line = {"loss_line": loss_line} loss_line_iou = {'loss_line_iou': loss_line_iou} loss_point = {"loss_point": model_loss_point} else: if targets is not None: h, w = targets[0]["img_size"] img_size = h gt_lines = [t["lines"] for t in targets] gt_points = [t["points"] for t in targets] loss_line = lines_point_pair_loss( line_logits, line_proposals, gt_lines, line_pos_matched_idxs ) loss_line_iou = line_iou_loss(line_logits, line_proposals, gt_lines, line_pos_matched_idxs, img_size) model_loss_point = compute_point_loss( line_logits, point_proposals, gt_points, point_pos_matched_idxs ) if not loss_line : loss_line=torch.tensor(0.0,device=line_features.device) if not loss_line_iou : loss_line_iou=torch.tensor(0.0,device=line_features.device) loss_line = {"loss_line": loss_line} loss_line_iou = {'loss_line_iou': loss_line_iou} loss_point={"loss_point":model_loss_point} else: if line_logits is None or line_proposals is None: raise ValueError( "both keypoint_logits and keypoint_proposals should not be None when not in training mode" ) lines_probs, kp_scores = line_inference(line_logits, line_proposals) for keypoint_prob, kps, r in zip(lines_probs, kp_scores, result): r["lines"] = keypoint_prob r["liness_scores"] = kps losses.update(loss_line) losses.update(loss_line_iou) losses.update(loss_point) print(f'losses:{losses}') if self.has_mask(): mask_proposals = [p["boxes"] for p in result] if self.training: if matched_idxs is None: raise ValueError("if in training, matched_idxs should not be None") # during training, only focus on positive boxes num_images = len(proposals) mask_proposals = [] pos_matched_idxs = [] for img_id in range(num_images): pos = torch.where(labels[img_id] > 0)[0] mask_proposals.append(proposals[img_id][pos]) pos_matched_idxs.append(matched_idxs[img_id][pos]) else: pos_matched_idxs = None if self.mask_roi_pool is not None: mask_features = self.mask_roi_pool(features, mask_proposals, image_shapes) mask_features = self.mask_head(mask_features) mask_logits = self.mask_predictor(mask_features) else: raise Exception("Expected mask_roi_pool to be not None") loss_mask = {} if self.training: if targets is None or pos_matched_idxs is None or mask_logits is None: raise ValueError("targets, pos_matched_idxs, mask_logits cannot be None when training") gt_masks = [t["masks"] for t in targets] gt_labels = [t["labels"] for t in targets] rcnn_loss_mask = maskrcnn_loss(mask_logits, mask_proposals, gt_masks, gt_labels, pos_matched_idxs) loss_mask = {"loss_mask": rcnn_loss_mask} else: labels = [r["labels"] for r in result] masks_probs = maskrcnn_inference(mask_logits, labels) for mask_prob, r in zip(masks_probs, result): r["masks"] = mask_prob losses.update(loss_mask) # keep none checks in if conditional so torchscript will conditionally # compile each branch if self.has_keypoint(): keypoint_proposals = [p["boxes"] for p in result] if self.training: # during training, only focus on positive boxes num_images = len(proposals) keypoint_proposals = [] pos_matched_idxs = [] if matched_idxs is None: raise ValueError("if in trainning, matched_idxs should not be None") for img_id in range(num_images): pos = torch.where(labels[img_id] > 0)[0] keypoint_proposals.append(proposals[img_id][pos]) pos_matched_idxs.append(matched_idxs[img_id][pos]) else: pos_matched_idxs = None keypoint_features = self.line_roi_pool(features, keypoint_proposals, image_shapes) keypoint_features = self.line_head(keypoint_features) keypoint_logits = self.line_predictor(keypoint_features) loss_keypoint = {} if self.training: if targets is None or pos_matched_idxs is None: raise ValueError("both targets and pos_matched_idxs should not be None when in training mode") gt_keypoints = [t["keypoints"] for t in targets] rcnn_loss_keypoint = keypointrcnn_loss( keypoint_logits, keypoint_proposals, gt_keypoints, pos_matched_idxs ) loss_keypoint = {"loss_keypoint": rcnn_loss_keypoint} else: if keypoint_logits is None or keypoint_proposals is None: raise ValueError( "both keypoint_logits and keypoint_proposals should not be None when not in training mode" ) keypoints_probs, kp_scores = keypointrcnn_inference(keypoint_logits, keypoint_proposals) for keypoint_prob, kps, r in zip(keypoints_probs, kp_scores, result): r["keypoints"] = keypoint_prob r["keypoints_scores"] = kps losses.update(loss_keypoint) return result, losses