from collections import OrderedDict from libs.vision_libs import models from libs.vision_libs.models import mobilenet_v3_large, EfficientNet_V2_S_Weights, efficientnet_v2_s, \ EfficientNet_V2_M_Weights, efficientnet_v2_m, EfficientNet_V2_L_Weights, efficientnet_v2_l from libs.vision_libs.models._utils import _ovewrite_value_param, handle_legacy_interface from libs.vision_libs.models.detection import FasterRCNN from libs.vision_libs.models.detection.anchor_utils import AnchorGenerator from libs.vision_libs.models.detection.ssdlite import _mobilenet_extractor from libs.vision_libs.models.resnet import resnet50, ResNet50_Weights, resnet18 from libs.vision_libs.models.detection._utils import overwrite_eps from libs.vision_libs.models.detection.backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers from libs.vision_libs.ops import misc as misc_nn_ops, MultiScaleRoIAlign from torch import nn import torch from torchvision.models.detection.backbone_utils import BackboneWithFPN, resnet_fpn_backbone from torchvision.ops.feature_pyramid_network import FeaturePyramidNetwork, LastLevelMaxPool def get_resnet50_fpn(): is_trained = False trainable_backbone_layers = _validate_trainable_layers(is_trained, None, 5, 3) norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d backbone = resnet50(weights=None, progress=True, norm_layer=norm_layer) backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers) return backbone def get_resnet18_fpn(): is_trained = False trainable_backbone_layers = _validate_trainable_layers(is_trained, None, 5, 3) norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d backbone = resnet18(weights=None, progress=True, norm_layer=norm_layer) backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers) return backbone def get_mobilenet_v3_large_fpn(): is_trained = False trainable_backbone_layers = _validate_trainable_layers(is_trained, None, 6, 3) norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d backbone = mobilenet_v3_large(weights=None, progress=True, norm_layer=norm_layer) backbone = _mobilenet_extractor(backbone, True, trainable_backbone_layers) return backbone def get_convnext_fpn(): convnext = models.convnext_base(pretrained=True) in_channels_list = [128, 256, 512, 1024] backbone_with_fpn = BackboneWithFPN( convnext.features, return_layers={'1': '0', '3': '1', '5': '2', '7': '3'}, # 确保这些键对应到实际的层 in_channels_list=in_channels_list, out_channels=256 ) return backbone_with_fpn def get_efficientnetv2_fpn(name='efficientnet_v2_m', pretrained=True): # 加载EfficientNetV2模型 if name == 'efficientnet_v2_s': weights = EfficientNet_V2_S_Weights.IMAGENET1K_V1 if pretrained else None backbone = efficientnet_v2_s(weights=weights).features if name == 'efficientnet_v2_m': weights = EfficientNet_V2_M_Weights.IMAGENET1K_V1 if pretrained else None backbone = efficientnet_v2_m(weights=weights).features if name == 'efficientnet_v2_l': weights = EfficientNet_V2_L_Weights.IMAGENET1K_V1 if pretrained else None backbone = efficientnet_v2_l(weights=weights).features # 定义返回的层索引和名称 return_layers = {"2": "0", "3": "1", "4": "2", "5": "3"} # 获取每个层输出通道数 in_channels_list = [] for layer_idx in [2, 3, 4, 5]: module = backbone[layer_idx] if hasattr(module, 'out_channels'): in_channels_list.append(module.out_channels) elif hasattr(module[-1], 'out_channels'): # 如果module本身没有out_channels,检查最后一个子模块 in_channels_list.append(module[-1].out_channels) else: raise ValueError(f"Cannot determine out_channels for layer {layer_idx}") # 使用BackboneWithFPN包装backbone backbone_with_fpn = BackboneWithFPN( backbone=backbone, return_layers=return_layers, in_channels_list=in_channels_list, out_channels=256 ) return backbone_with_fpn # 加载 ConvNeXt 模型 convnext = models.convnext_base(pretrained=True) # convnext = models.convnext_tiny(pretrained=True) # convnext = models.convnext_small(pretrained=True) # print(convnext) # # 打印模型的所有命名层 # for name, _ in convnext.features[5].named_children(): # print(name) # 修改 ConvNeXt 以适应 Faster R-CNN # 修改 ConvNeXt 以适应 Faster R-CNN def get_anchor_generator(backbone, test_input): features = backbone(test_input) # 获取 backbone 输出的所有特征图 featmap_names = list(features.keys()) print(f'featmap_names:{featmap_names}') num_features = len(features) # 特征图数量 print(f'num_features:{num_features}') # num_features=num_features-1 # # 定义每层的 anchor 尺寸和比例 # base_sizes = [32, 64, 128] # 支持最多 4 层 # sizes = tuple((size,) for size in base_sizes[:num_features]) anchor_sizes = tuple((int(16 * 2 ** i),) for i in range(num_features)) # 自动生成不同大小 print(f'anchor_sizes:{anchor_sizes }') aspect_ratios = ((0.5, 1.0, 2.0),) * num_features print(f'aspect_ratios:{aspect_ratios}') return AnchorGenerator(sizes=anchor_sizes , aspect_ratios=aspect_ratios) if __name__ == '__main__': # 创建 ConvNeXt backbone convnext = models.convnext_base(pretrained=True) for i,layer in enumerate(convnext.features): print(f'layer{i}:{layer}') # 创建一个小的输入张量用于获取各层输出通道数 dummy_input = torch.randn(1, 3, 224, 224) # output_channels_list = get_output_channels(convnext.features, dummy_input) # print(f'output_channels_list:{output_channels_list}') # 根据之前的经验,选择合适的层索引 selected_layers = [3, 5, 7] # 假设这是我们要用作 FPN 输入的层索引 in_channels_list = [128,256,512,1024] print(f'in_channels_list:{in_channels_list}') # 创建 FPN backbone_with_fpn = BackboneWithFPN( convnext.features, return_layers={'1':'0','3': '1', '5': '2', '7': '3'}, # 确保这些键对应到实际的层 in_channels_list=in_channels_list, out_channels=256 ) # 创建 Faster R-CNN 模型 # anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),), # aspect_ratios=((0.5, 1.0, 2.0),)) # anchor_generator = AnchorGenerator( # sizes=((32,), (64,), (128,)), # ✅ 正确 # aspect_ratios=((0.5, 1.0, 2.0),) * 3 # ✅ 正确 # ) test_input = torch.rand(1, 3, 224, 224) anchor_generator = get_anchor_generator(backbone_with_fpn, test_input) print(f'anchor_generator:{anchor_generator}') featmap_names=['0', '1', '2', '3', 'pool'] roi_pooler = MultiScaleRoIAlign( featmap_names=featmap_names, output_size=7, sampling_ratio=2 ) model = FasterRCNN( backbone=backbone_with_fpn, num_classes=91, # COCO 数据集有 91 类 rpn_anchor_generator=anchor_generator, box_roi_pool=roi_pooler ) # 测试模型 test_input = torch.randn(1, 3, 800, 800) # 注意输入尺寸应符合 Faster R-CNN 需求 model.eval() output = model(test_input) print(f'output: {output}') # 测试模型 dummy_input = torch.randn(1, 3, 800, 800) # 注意输入尺寸应符合 Faster R-CNN 需求 model.eval() output = model(dummy_input) print(f'output:{output}')