import time from models.line_detect.postprocess import show_predict import os import torch from PIL import Image import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np from models.line_detect.line_net import linenet_resnet50_fpn from torchvision import transforms from rtree import index # from models.wirenet.postprocess import postprocess from models.wirenet.postprocess import postprocess device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def load_best_model(model, save_path, device): if os.path.exists(save_path): checkpoint = torch.load(save_path, map_location=device) model.load_state_dict(checkpoint['model_state_dict']) # if optimizer is not None: # optimizer.load_state_dict(checkpoint['optimizer_state_dict']) epoch = checkpoint['epoch'] loss = checkpoint['loss'] print(f"Loaded best model from {save_path} at epoch {epoch} with loss {loss:.4f}") else: print(f"No saved model found at {save_path}") return model def box_line_optimized(pred): # 创建R-tree索引 idx = index.Index() # 将所有线段添加到R-tree中 lines = pred[-1]['wires']['lines'] # 形状为[1, 2500, 2, 2] scores = pred[-1]['wires']['score'][0] # 假设形状为[2500] # 提取并处理所有线段 for idx_line in range(lines.shape[1]): # 遍历2500条线段 line_tensor = lines[0, idx_line].cpu().numpy() / 128 * 512 # 转换为numpy数组并调整比例 x_min = float(min(line_tensor[0][0], line_tensor[1][0])) y_min = float(min(line_tensor[0][1], line_tensor[1][1])) x_max = float(max(line_tensor[0][0], line_tensor[1][0])) y_max = float(max(line_tensor[0][1], line_tensor[1][1])) idx.insert(idx_line, (x_min, y_min, x_max, y_max)) for idx_box, box_ in enumerate(pred[0:-1]): box = box_['boxes'].cpu().numpy() # 确保将张量转换为numpy数组 line_ = [] score_ = [] for i in box: score_max = 0.0 tmp = [[0.0, 0.0], [0.0, 0.0]] # 获取与当前box可能相交的所有线段 possible_matches = list(idx.intersection((i[0], i[1], i[2], i[3]))) for j in possible_matches: line_j = lines[0, j].cpu().numpy() / 128 * 512 if (line_j[0][1] >= i[0] and line_j[1][1] >= i[0] and # 注意这里交换了x和y line_j[0][1] <= i[2] and line_j[1][1] <= i[2] and line_j[0][0] >= i[1] and line_j[1][0] >= i[1] and line_j[0][0] <= i[3] and line_j[1][0] <= i[3]): if scores[j] > score_max: tmp = line_j score_max = scores[j] line_.append(tmp) score_.append(score_max) processed_list = torch.tensor(line_) pred[idx_box]['line'] = processed_list processed_s_list = torch.tensor(score_) pred[idx_box]['line_score'] = processed_s_list return pred # def box_line_(pred): # for idx, box_ in enumerate(pred[0:-1]): # box = box_['boxes'] # 是一个tensor # line = pred[-1]['wires']['lines'][idx].cpu().numpy() / 128 * 512 # score = pred[-1]['wires']['score'][idx] # line_ = [] # score_ = [] # # for i in box: # score_max = 0.0 # tmp = [[0.0, 0.0], [0.0, 0.0]] # # for j in range(len(line)): # if (line[j][0][1] >= i[0] and line[j][1][1] >= i[0] and # line[j][0][1] <= i[2] and line[j][1][1] <= i[2] and # line[j][0][0] >= i[1] and line[j][1][0] >= i[1] and # line[j][0][0] <= i[3] and line[j][1][0] <= i[3]): # # if score[j] > score_max: # tmp = line[j] # score_max = score[j] # line_.append(tmp) # score_.append(score_max) # processed_list = torch.tensor(line_) # pred[idx]['line'] = processed_list # # processed_s_list = torch.tensor(score_) # pred[idx]['line_score'] = processed_s_list # return pred def predict(pt_path, model, img): model = load_best_model(model, pt_path, device) model.eval() if isinstance(img, str): img = Image.open(img).convert("RGB") transform = transforms.ToTensor() img_tensor = transform(img) with torch.no_grad(): t_start = time.time() predictions = model([img_tensor.to(device)]) t_end=time.time() print(f'predict used:{t_end-t_start}') # print(f'predictions:{predictions}') boxes=predictions[0]['boxes'].shape lines=predictions[-1]['wires']['lines'].shape lines_scores=predictions[-1]['wires']['score'].shape print(f'predictions boxes:{boxes},lines:{lines},lines_scores:{lines_scores}') t_start=time.time() pred = box_line_optimized(predictions) t_end=time.time() print(f'matched boxes and lines used:{t_end - t_start}') # print(f'pred:{pred[0]}') show_predict(img_tensor, pred, t_start) if __name__ == '__main__': t_start = time.time() print(f'start to predict:{t_start}') model = linenet_resnet50_fpn().to(device) pt_path = r"F:\BaiduNetdiskDownload\resnet50_best_e8.pth" img_path = r"I:\datasets\wirenet_1000\images\val\00035148_0.png" predict(pt_path, model, img_path) t_end = time.time() # print(f'predict used:{t_end - t_start}')