# import torch # from torchvision.utils import draw_bounding_boxes # from torchvision import transforms # import matplotlib.pyplot as plt # import numpy as np # # # def c(score): # # 根据分数返回颜色的函数,这里仅作示例,您可以根据需要修改 # return (1, 0, 0) if score > 0.9 else (0, 1, 0) # # # def postprocess(lines, scores, diag_threshold, min_score, remove_overlaps): # # 假设的后处理函数,用于过滤线段 # nlines = [] # nscores = [] # for line, score in zip(lines, scores): # if score >= min_score: # nlines.append(line) # nscores.append(score) # return np.array(nlines), np.array(nscores) # # # def show_line(img, pred, epoch, writer): # im = img.permute(1, 2, 0).cpu().numpy() # # # 绘制边界框 # boxed_image = draw_bounding_boxes((img * 255).to(torch.uint8), pred[0]["boxes"], # colors="yellow", width=1).permute(1, 2, 0).cpu().numpy() # # H = pred[-1]['wires'] # lines = H["lines"][0].cpu().numpy() / 128 * im.shape[:2] # scores = H["score"][0].cpu().numpy() # # print(f"Lines before deduplication: {len(lines)}") # # # 移除重复的线段 # for i in range(1, len(lines)): # if (lines[i] == lines[0]).all(): # lines = lines[:i] # scores = scores[:i] # break # # print(f"Lines after deduplication: {len(lines)}") # # # 后处理线段以移除重叠的线段 # diag = (im.shape[0] ** 2 + im.shape[1] ** 2) ** 0.5 # nlines, nscores = postprocess(lines, scores, diag * 0.01, 0, False) # # print(f"Lines after postprocessing: {len(nlines)}") # # # 创建一个新的图像并绘制线段和边界框 # fig, ax = plt.subplots(figsize=(boxed_image.shape[1] / 100, boxed_image.shape[0] / 100)) # ax.imshow(boxed_image) # ax.set_axis_off() # plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0) # plt.margins(0, 0) # plt.gca().xaxis.set_major_locator(plt.NullLocator()) # plt.gca().yaxis.set_major_locator(plt.NullLocator()) # # PLTOPTS = {"color": "#33FFFF", "s": 15, "edgecolors": "none", "zorder": 5} # for (a, b), s in zip(nlines, nscores): # if s < 0.85: # 调整阈值以筛选显示的线段 # continue # plt.plot([a[1], b[1]], [a[0], b[0]], c=c(s), linewidth=2, zorder=s) # plt.scatter(a[1], a[0], **PLTOPTS) # plt.scatter(b[1], b[0], **PLTOPTS) # # plt.tight_layout() # fig.canvas.draw() # image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8).reshape( # fig.canvas.get_width_height()[::-1] + (3,)) # plt.close() # img2 = transforms.ToTensor()(image_from_plot) # # writer.add_image("output_with_boxes_and_lines", img2, epoch) # print("Image with boxes and lines added to TensorBoard.") import numpy as np import matplotlib.pyplot as plt from scipy.ndimage import gaussian_filter import random # 假设我们有一些关键点位置 keypoints = [(0, 0), (70, 80), (90, 30)] # 创建一个空白的热图 heatmap = np.zeros((100, 100)) # 将关键点位置添加到热图中 for point in keypoints: y, x = point heatmap[y, x] = random.random() # heatmap[y, x] = 1 # 假设置信度为1 print(heatmap) # 使用高斯滤波平滑热图 heatmap_smooth = gaussian_filter(heatmap, sigma=1) print(heatmap_smooth)